Genetically Engineered *Bt* Rice – food safety concerns and environmental dangers.

Introduction

Genetically engineered (GE) insect resistant *Bt* rice has not been approved for cultivation anywhere in the world. There is no environmental assessment, nor human food safety assessment available for any GE *Bt* rice. However, studies from other GE *Bt* crops such as maize (corn) and cotton give strong indications that *Bt* rice will have serious environmental consequences and there are human food safety concerns.

Food safety concerns of GE *Bt* rice include:
- Rice is the most important food for many people.
- No food safety assessment.
- Cry1Ac is a potential allergen.

Insect resistant GE *Bt* rice could lead to adverse effects on the environment if:
- non-target species are harmed, or
- the emergence of more troublesome weeds is encouraged;
- insects resistant to the introduced toxin evolve and require more intensive chemical control.
- genetic resources are contaminated.

What is GE insect resistant *Bt* rice?

GE insect resistant *Bt* rice varieties are developed to be resistant to certain pests such as leaffolder and yellow stem borer. *Bt* crops are created by inserting a synthetic version of a gene from the naturally occurring soil bacterium, *Bacillus thuringiensis* (*Bt*) into the plant’s own DNA, so the plant creates its own toxin to destroy pests.

There are several different types of GE *Bt* rice known to be under experimentation, either in the laboratory, or as field trials. These produce slightly different *Bt* toxins and include: Cry1Ab; Cry1Ac and those that contain both toxins “fused” together, Cry1Ab/Cry1Ac. These types of *Bt* toxins have slightly different properties. Most environmental studies have been conducted with the Cry1Ab toxin that is most commonly used in *Bt* maize. There are human food safety concerns concerning Cry1Ac.

However, there is little to no information available at all on aspect of the human food safety or risk to the environment from fused toxins, Cry1Ab/Cry1Ac as it has not been used in any commercially grown GE food crops, anywhere in the world and there is no natural comparision. Monsanto’s GE Bollgard cotton contain does contain a gene for a fused Cry1Ab/Cry1Ac, but it is not known if this is the same *Bt* protein produced in GE rice and cotton is not a food crop.

GE *Bt* rice and food safety

On average, rice provides 30% of calorie and 19% of protein intake in China. Rice also forms an important part of the diet at all ages, including for babies where rice flour and gruel form a part of foods given during weaning. GE maize and soybeans are largely used for animal feed and experiences with these crops cannot be used to assume the safety of GE rice.

Key questions for food safety are:
1) whether the genetic modification has resulted in potentially harmful unintended changes, and the implications of these if they occur; and
2) any toxic or allergic effects of the gene products introduced through genetic engineering.

No food safety assessment has been made for any *Bt* rice. There is limited information on Cry1Ab GE rice\(^5\). But there is no information available for the fused Cry1Ab/Cry1Ac toxin, its food safety is completely unknown.

For Cry1Ac, there is concern over its potential allergenicity. Research considering the immunogenicity of the Cry1Ac toxin\(^6\) indicates that

- Cry1Ac protoxin is a potent immunogen.
- The protoxin is immunogenic by both the intraperitoneal (injected) and intragastric (ingested) route.
- The immune response to the protoxin is both systemic and mucosal.
- Cry1Ac protoxin binds to surface proteins in the mouse small intestine.

These research reports suggest extreme caution is required in the use of Cry1Ac GE rice.

Although the *Bt* toxins are likely to be at least partially degraded during cooking of rice before consumption, limiting their possible allergenic or toxic potential, there is, as yet, no data on this. This potential for allergenicity requires special caution and attention especially as rice is a staple food crop. The allergy concerns in relation to Cry1Ac or the fused protein in GE *Bt* rice could have regulatory consequences. For example, StarLink *Bt* maize was not allowed to be used in human food in North America because of the risk to cause allergies.

The FAO/WHO Codex Alimentarius, who are developing international standards for GE food safety testing have adopted a “decision tree” approach\(^7\). This means that, should any evidence of possible allergy be found (as is the case with Cry1Ac), a very thorough and detailed assessment on the allergenic risks would need to be performed according to the FAO/WHO guidelines. Therefore, Cry1Ac must be examined thoroughly as a potential allergen. This has not yet been done.

Impacts on GE *Bt* rice on non-target organisms

In its natural form, *Bt* has been used by farmers practising organic and other sustainable growing methods since the 1950s as a spray to kill pests without damaging non-targeted insects or other wildlife. However, the *Bt* toxins produced by insect resistant rice are significantly different and have the potential to be harmful to beneficial predator insects.

Natural *Bt* sprays have little effect on non-target organisms because the bacterial "prototoxin" is in an inactivated state and only becomes toxic when processed in the gut of certain (targeted) species of insect larvae. In contrast, many insect resistant plants contain an artificial, truncated *Bt* gene and less processing is required to generate the toxin. It is therefore less selective, and may harm non-target insects that do not have the enzymes to process the pro-toxin, as well as the pests for which it is intended (Fig. 1)\(^8\).

Bt proteins from natural *Bt* sprays degrade relatively quickly in the field as a result of ultraviolet light and lose most toxic activity within several days to two weeks after application\(^9\). In *Bt* crops, however, the *Bt* toxin is produced throughout the entire lifespan of the plants.

Direct Effects:

GE *Bt* rice, like other *Bt* crops, could be harmful to non-target organisms if they either consume the toxin directly in pollen or plant debris, or indirectly by feeding on pests that have ingested the toxin. This could
Insect Resistant Bt Rice – food safety concerns and environmental dangers

cause harm to ecosystems by reducing the numbers of important species, or reduce the numbers of beneficial organisms that would naturally help control the pest species.

The Bt toxins in GE rice are specifically toxic to Lepidoptera (butterflies and moths), but not all of these are pests. The potential for GE Bt crops to be directly toxic to non-target species was highlighted by research in the USA when it was demonstrated that pollen from one type of GE Bt maize (Bt176) was toxic to the much-loved Monarch butterfly. More recently, it has been shown that long-term exposure even to relatively low levels of Bt in maize pollen causes adverse effects on larvae of the Monarch butterfly. Importantly, these risks to non-target species were not identified until after commercialisation of Bt maize, and required several years of research for the long-term implications to be realized.

In Asia, the silkworm, Bombyx mori, is sensitive to the Bt toxin Cry1Aa, although much less so to Cry1Ab and Cry1Ac. Research has shown that pollen is found on mulberry plants used for silkworms at levels that would be toxic if it contained Cry 1Aa Bt toxin. In areas where silk production takes place using mixed rice/mulberry cropping, if Cry1Aa producing varieties of GE rice are introduced and the toxin is expressed in pollen, serious impacts on the silkworm could arise. In addition, long-term exposure to other Bt toxins such as Cry1Ab and Cry1Ac could quite possibly have harmful effects on silkworms similar to those observed to low level exposure of Bt to Monarch butterfly larvae. However, such long-term studies have not yet been performed.

GE Bt rice could have adverse effects on wildlife, particularly butterflies and moths.

Indirect effects:
Data from Bt maize indicate that the beneficial insects, lacewings, have increased mortality when fed on larvae of a maize pest, the corn borer, which had been fed on Bt. Numbers of beneficial ladybeetles were found to be lower in Bt maize plots than in non-Bt maize. Ladybeetles feed on many food sources including on aphids, pollen, European corn borer eggs and other pest eggs, so have several routes of exposure to the Bt toxin. Non-target, beneficial species that may feed on rice pests could be similarly affected.

Changes in populations of both pests and of natural enemies have been documented in Bt cotton. Data from China show that use of Bt crops can exacerbate populations of other secondary pests, including aphids, lygus bug, whitefly, Carmine spider mite and thrips. Studies there have shown significant reductions in populations of the beneficial parasites Microplitis sp. (88.9% reduction) and Campopleis chloridae (79.2% reduction) in Bt cotton fields.

Bt toxins from GE rice could be passed on higher up the food chain, affecting other organisms. GE Bt rice could also affect beneficial insects.

Impact of GE Bt Rice on soil health

Recent research has also show that Bt toxin is released from roots of Bt rice containing Cry1Ab and that the toxin persists as a result of binding to soil particles. It is not clear whether the release of such toxins will aid in control of pest species or harm non-target species in soil.

Recent laboratory studies in China have identified changes in some soil enzyme activities and microbial communities when Bt-rice straws were incorporated in water-flooded soils. It was considered that some change in the composition of the GE rice as a result of the introduction of the Bt gene was responsible, although the implications of the findings for soil fertility have not been tested. Lignin production in Bt maize has also been found to be unexpectedly increased which raised questions about its impact on degradation in soil.

Soil organisms play a crucial role in soil health, and therefore agriculture. An unknown number of species make up the soil food web and could be affected by Bt – yet tests have been conducted on very few, in very few soil types and ecosystems.

GE Bt rice may be problematic for long-term soil health, as it expresses proteins that are known to be toxic to certain insects.
Effects on Sustainable Agriculture

An additional environmental hazard of insect resistant crops is that targeted pests could develop resistance to the effects of *Bt*. This is because constant exposure to the *Bt* toxin produced by these plants encourages the survival of individual pests which have a genetic immunity to *Bt*. Over time, this could lead to the proliferation of resistant individuals to the extent that *Bt* would no longer be effective against the majority of the targeted pest population.

If widespread resistance were to occur, the insect resistant properties of the GE crops would become ineffective. The application of new and even more toxic chemical pesticides would therefore be almost inevitable.

Increased resistance would pose a serious threat to the use of Bt sprays, which are a useful tool in sustainable agriculture methods.

Potential for contamination

Wild rice:
Asia is the centre of origin of rice and, therefore, wild species with which cultivated rice (*Oryza sativa*) can outcross to (pollinate) are widely distributed. These wild species are sometimes weeds. Although rates of outcrossing are low compared to other crops, they are still considered significant. The production of crosses between cultivated GE and wild rice is considered inevitable over time, where the two occur together. Insect-resistance in GE crops (e.g. *Bt* crops) is considered by scientists to be a fitness-enhancing gene, and thus likely to increase in frequency and spread throughout local populations. The introduction of the *Bt* trait, which would improve the competitiveness of wild rice varieties could lead to their emergence as more problematic weeds. Such *Bt* wild rice may also swamp wild varieties and possibly lead to their extinction.

Although *O. rufipon* is not present in central China, and is not a problem weed in rice fields, it does occur in the southern provinces of Guangdong, Guangxi, Hainan and Yunnan and it is considered endangered. Therefore, GE rice could lead to negative impacts on this species and add to the already established need to protect these populations from gene flow from cultivated rice.

The loss of wild species of rice through genetic contamination poses a considerable threat to efforts to conserve natural biodiversity and represents a serious loss of genetic resources and which can jeopardize breeding and food security in the future as breeding efforts depend on diverse genetic resources.

Weedy rice:
Where red rice is a problem, gene flow is inevitable over time, despite low outcrossing frequencies. The transfer of genes giving resistance to insect attack and disease may further increase the competitive advantage of red rice.

Non-GE rice:
Although rice is largely self-pollinating, pollen movement to 100 metres has been detected and is strongly influenced by wind speed and direction. Therefore, some degree of cross pollination of neighbouring non-GE rice is almost inevitable.

Conclusions

1. The human food safety of Bt GE rice is unknown. A thorough investigation for allergenicity is required;
2. GE Bt rice could have adverse effects on wildlife, particularly butterflies and moths;
3. *Bt* toxins from GE rice could be passed on higher up the food chain, affecting other organisms. GE Bt rice could also affect beneficial insects;
4. GE Bt rice may be problematic for long-term soil health, as it expresses proteins that are known to be toxic to certain insects;
5. Increased resistance would pose a serious threat to the use of Bt sprays, which are a useful tool in sustainable agriculture methods;
6. The loss of wild species of rice through genetic contamination poses a considerable threat to efforts to conserve natural biodiversity and represents a serious loss of genetic resources.
References

Insect Resistant Bt Rice – food safety concerns and environmental dangers

