Briefing Paper – Phasing out synthetic nitrogen fertiliser

Prepared by Genevieve Toop on behalf of Greenpeace NZ

The Government brought in a cap on synthetic nitrogen fertiliser (synthetic fertiliser) as part of the 2020 freshwater reforms. During the consultation period Greenpeace submitted in support of a full phase-out of synthetic fertiliser, along with thousands of New Zealanders. The following briefing makes the case for a full phase-out and includes:

a. A summary of the climate and water quality impacts of synthetic fertiliser and its role in the breach of the safe planetary boundary for nitrogen pollution.
b. An overview of the use of synthetic fertiliser in New Zealand
c. The economic benefits of phasing out its use.
d. Other matters relevant to the need for a full phase-out.
e. How a synthetic fertiliser phase-out could be applied.
f. International examples of synthetic fertiliser prohibitions and stringent caps

THE CLIMATE IMPACTS OF SYNTHETIC FERTILISER

In essence, the research on the climate impacts shows that:

a. Agriculture is responsible for 48% of New Zealand’s emissions. Its emissions have increased 17% since 1990.1
b. According to the Ministry for the Environment (MfE), this increase: “is primarily due to an 85.6 per cent increase in the national dairy herd since 1990 and an increase in the application of synthetic nitrogen fertiliser of 670 per cent since 1990.” 2
c. The use of synthetic fertiliser in New Zealand has enabled the intensification of dairy farming. It has led to higher stocking rates and a substantial increase in the number of dairy cows. 3 This has in turn increased the methane and nitrous oxide emissions from the dairy herd.
d. According to the Parliamentary Commissioner for the Environment (PCE): “The increased use of urea fertiliser has, along with irrigation and supplementary feed, enabled higher stocking rates.” 4
e. Since 1990, methane emissions from dairy cattle have increased 129%. 5
f. The dairy herd is now New Zealand’s largest emitter, responsible for 22.9% of all domestic emissions. 6

3 PCE 2013: Water quality in New Zealand: Land use and nutrient pollution. Page 16. (Link)
4 Ibid
a. It is important to note, that this statistic is not representative of the dairy industry emissions in full as it only captures emissions from the cows. It excludes emissions from the roughly 700,000 tonnes of coal burnt for milk dehydration annually, transport emissions and offshore emissions from deforestation for supplementary feed.

b. Synthetic fertiliser is a climate pollutant itself, notwithstanding its effect on intensification. It emits nitrous oxide and carbon dioxide when applied to land. These are known as direct emissions.

c. Synthetic fertiliser’s direct emissions have increased 512% since 1990. They are now greater than those from the entire domestic aviation industry.

THE WATER QUALITY IMPACTS OF SYNTHETIC FERTILISER

In essence, the research on water quality impacts shows that:

a. The use of synthetic nitrogen fertiliser has enabled the intensification of dairy farming. This has increased pollution from dairying and particularly diffuse nitrogen pollution from urine patches.

b. Nitrogen pollution has a significant negative impact on water quality in New Zealand and this pollution is worsening, overall.

c. The nitrogen balance 1998-2009 has worsened more than in any other OECD country, primarily due to expansion and intensification of dairy.

d. Synthetic nitrogen fertiliser is a water pollutant itself, notwithstanding its effect on intensification.

e. The largest sources of nitrogen pollution into New Zealand’s rivers, in order of magnitude, are; urine from dairy cattle, urine from sheep followed by synthetic nitrogen fertiliser itself.

f. According to MfE, “Between 1990 and 2012, the estimated amount of nitrogen that leached into soil from agriculture increased 29 percent. This increase was mainly due to increases in dairy cattle numbers (and therefore urine which contains nitrogen) and nitrogen fertiliser use.”

7 Ministry of Business and Innovation, 2020. NZ Energy Quarterly Data. (Link)
9 Parliamentary Commissioner for the Environment 2013: Water quality in New Zealand: Land use and nutrient pollution. Page 16 (Link)
13 Ibid
g. At elevated levels, nitrate in drinking water impacts on human health. At levels higher than the World Health Organisation (WHO) limit nitrate contamination can be fatal. Many groundwater wells already exceed this limit.

h. Recent research indicates that nitrate levels much lower than the WHO limit, are associated with an increased risk of colorectal cancer.

i. The Canterbury Medical Officer of Health has warned nitrate contamination is a looming public health risk in Canterbury, which is home to the highest stocking rates and highest synthetic fertiliser use in the country.

THE SAFE PLANETARY BOUNDARIES

a. Scientists have identified a set of nine ecological and biophysical limits within which the Earth can continue to sustain human society. These are known as the ‘safe planetary boundaries.’

b. A diagram of the boundaries and the human impact on them so far is in Appendix 1.

c. Scientists warn: “Transgressing one or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental- to planetary-scale systems.”

d. There are three planetary boundaries that have already been breached. They are biodiversity loss, climate change and the nitrogen cycle.

e. The impacts of the nitrogen cycle breach are many and are already being seen around the world. They include; the rapid growth in nitrous oxide emissions, freshwater pollution, ozone depletion, acid rain, oceanic dead zones, loss of potable drinking water and human illnesses.

f. Moreover, nitrogen pollution impairs humanity’s efforts to return to or remain within a number of the other planetary boundaries, including stratospheric ozone depletion and climate change.

g. Synthetic nitrogen fertiliser is the single largest cause of this breach.

AN OVERVIEW OF THE USE OF SYNTHETIC FERTILISER IN NEW ZEALAND

18 https://www.rnz.co.nz/national/programmes/outspoken/audio/2018627863/outspoken-canterbury-water

19 DairyNZ 2019, New Zealand Dairy Statistics 2018-19, Pg 16 (Link) AND StatsNZ, Agricultural Production statistics, final results by farm type accessed via www.stats.govt.nz (Link)

21 Ibid

22 Ibid

Synthetic nitrogen fertiliser is manufactured using fossil fuel gas and a chemical process called “Haber-Bosch”, which extracts inert nitrogen from the atmosphere and converts it to a form plants can use to grow. In the 1980’s the Muldoon Government built the synthetic fertiliser factory in Kapuni, Taranaki. Since then synthetic fertiliser use has grown rapidly. The data on synthetic fertiliser use in NZ shows that:

a. New Zealand has had the highest rate of increase in synthetic nitrogen fertiliser use in the OECD.

b. Since 1990, the annual application of synthetic nitrogen has increased 627%.

c. Around 429,000 tonnes of synthetic nitrogen was used in 2015.

d. By volume the dairy industry was by far the largest user of synthetic nitrogen using 66.5% of the total.

e. Synthetic nitrogen is applied via various fertilisers, all of which have different amounts of synthetic nitrogen in them. The majority is applied via urea followed by, diammonium phosphate (DAP) and ammonium sulphate (SOA).

f. Urea contains 46% synthetic nitrogen, DAP 17.6% and SOA 20%.

g. Around 265,000 tonnes of urea is made annually at the factory in Kapuni, Taranaki. The rest of the synthetic fertiliser used in New Zealand is imported, mostly from Saudi Arabia, Malaysia and China.

RATES OF APPLICATION BY LAND-USE

These are calculated using Stats NZ and Fertiliser Association data:

a. The livestock sector is the largest user of synthetic nitrogen in New Zealand, using 91% of the total volume.

b. Dairy uses 66.5%, sheep and beef 24.5%, arable and grain growing 6.6%, and vegetable growing 1.3%. All other land-uses use only 0.60%.

c. Dairy is also the highest per hectare user, using on average 150 kg/ha.

d. Arable is the second highest user per hectare, using on average 81 kg/ha.

e. Vegetable growing is the third highest user, using on average 72 kg/ha.

f. The average per hectare use in horticulture (excluding vegetable production) is 15 kgs/ha.

g. The average per hectare use of the largest land-user in New Zealand, pastoral sheep and beef farming, is only 12 kg/ha.

27 Stephen Levine, 2006 *New Zealand as it Might Have Been, Volume 1* Victoria University Press, Page 168 (link)
28 OECD 2008 Environment Performance of Agriculture in OECD countries. Page 54 (Link)
30 Ibid
34 StatsNZ, Agricultural Production statistics, final results by farm type accessed via www.stats.govt.nz (link)
35 AgFirst, 2020. Value of N Fertiliser Report 2 (link)
h. It is important to note that many farmers and growers do not use synthetic fertiliser at all. Its use is prohibited on all certified organic farms.

ECONOMICS AND YIELDS

Studies show that getting rid of synthetic fertiliser is a Win-Win for farmers and the environment:

a. A ten year in-field study by DairyNZ compared a farm with no synthetic nitrogen application and a farm using 181/kg/ha/yr of urea. It found that in a system using no synthetic nitrogen at all:
 a. "profitable milk production systems can be achieved without N fertiliser applications"
 b. At lower milk price ($4.60 kg/MS) the farm using no synthetic N was more profitable than the one using 181 kgs. 36
b. A recent economic model done by the NZ Landcare Trust compared farms with varying stocking rates, fertiliser use and imported feed. It found that:
 a. The farm with the lowest synthetic fertiliser use and the second smallest herd had the largest increase in profitability (29%) and a 13% reduction in nitrate leaching and an 18% reduction in GHG emissions.37

c. A decade long study in the USA found that a farm can reduce 100 kg/ha of nitrogen fertiliser by simply increasing the varieties of pasture crops used in the field from 1 to 16 species, and still produce the same yield as the farm using the 100 kgs/N/ha. 38

d. A global meta-analysis used financial performance of organic and industrial agriculture from 40 years of studies covering 55 crops on five continents and found: Organic agriculture was significantly more profitable than industrial agriculture.39

e. A field study in the USA on vegetable farms found soil health and fertility was higher on farms that were not using synthetic fertiliser than on farms that were. By the second year the vegetable farms using no synthetic fertiliser had higher yields. 40

f. A field study in the USA, done over two decades, compared a mixed organic crop and livestock farm and a monoculture crop system that used synthetic fertiliser. It found that in 4 out of the 5 drought years the organic maize and soybean out yielded the synthetically fertilised monoculture by significant margins.41

37 A.J. Litherland (NZ Landcare Trust), B. Riddler (E2M modelling), M. Langford (Fonterra), M Shadwick (DairyNZ) 2019. CASE STUDY Finding a win-win for the farmer and the environment. Page 2 (Link)
OTHER MATTERS RELEVANT TO THE NEED FOR A SYNTHETIC FERTILISER PHASE-OUT

Notwithstanding the above evidence regarding the significant environmental impacts of synthetic fertiliser use and the economic benefits of phasing out its use, these additional arguments support the case for a phase-out of synthetic fertiliser.

The failure of industry self-regulation

a. There are currently no regulatory or financial policies in place to reduce greenhouse gas emissions from agriculture in New Zealand.
b. There is only a non-enforceable emissions target in the Zero Carbon Act and a plan to make the industry pay for only 5% of its emissions in 2025.
c. Instead of taking legislative action the Government has signed a voluntary agreement with the agricultural industry called ‘He Waka Eke Noa’. 42
d. This is an example of ‘industry self-regulation’ which often comprises of voluntary commitments, codes of best-practice and industry-led media campaigns designed to shift responsibility for issues away from companies and onto individual consumers. 43
e. Industry self-regulation was initially used aggressively by the Tobacco industry for decades to deflect legislative action that would damage their profits. 44
f. Since then, several industries have also attempted to avoid government regulation and placate concerned stakeholders by promising to reduce their environmental impacts voluntarily. 45
g. There are few, if any, examples where industry self-regulation has worked for the public good. Instead, there is now substantive evidence that industry self-regulation is ineffective and fails to protect environmental 46 or human health. 47
h. The most applicable and recent example of the failure of industry self-regulation in New Zealand is the ‘The Dairying and Clean Streams Accord’. This was an agreement signed between Fonterra, the Government and Regional Councils in 2003. Its aim was to protect water from dairy pollution and it was used in place of stringent state enforced regulatory protections. Since it was signed in 2003, water pollution from intensive dairying has increased demonstrably. 48
i. The climate equivalent of the failed Clean Streams Accord is ‘He Waka Eke Noa’. The evidence in the literature and in New Zealand’s recent experience with agricultural industry self-regulation suggests He Waka Eke Noa will fail just as the Accord has.

‘Input controls’ and unambiguous rules.

44 Ibid
a. New Zealand has been primarily using an effects-based approach to regulating environmental harm through the Resource Management Act. This has not proven to be an adequate approach to environmental management on its own, as evidenced by the ongoing degradation of the environment across most indicators.

b. Effects-based management must now be coupled with input controls when there is substantive evidence of a pollutant causing environmental harm, as is the case for synthetic fertiliser.

c. Relying solely on effects-based management is problematic for agriculture, because diffuse nutrient loss from farms is difficult to measure.

d. The main software used to measure nutrient loss on farms and increasingly being used in monitoring and enforcement is Overseer. It is part-owned by the fertiliser industry which has a vested financial interest in maintaining and growing the use of large volumes of synthetic fertiliser. This is a clear-cut example of regulatory capture.

e. A solely effects-based regime also puts the bulk of the responsibility for meeting regulations onto farmers, of which there are nearly 30,000. The volume of farmers, coupled with complexity of measuring nutrient loss, makes monitoring and enforcement difficult for Government bodies to deliver.

f. The first global meta-analysis on nitrogen policy, which examined more than 2,700 nitrogen policies in 186 countries, states that: “most policies to address agricultural nitrogen pollution focus on changing farmer behaviour, and doing so is extremely difficult because of challenges in monitoring and enforcement.”

g. Measuring, controlling, monitoring and enforcing inputs is significantly simpler.

h. This is especially the case for synthetic fertiliser as there are essentially only two companies selling it in New Zealand.

i. The meta-analysis recommends: “policymakers focus on agri-food chain actors beyond the farm capable of influencing farm-level N management, from the fertilizer industry to wastewater treatment companies. This would shift the regulatory burden away from farmers and thereby transform an intractable non-point-source problem into a series of more manageable point-source approaches.”

APPLICATION OF A SYNTHETIC FERTILISER PHASE OUT IN NEW ZEALAND

The fertiliser supply chain

There are only two companies selling 98% of all the fertilisers used in New Zealand, Ravensdown and Ballance Agri-nutrients. Both are co-operatives that hold substantial information about their shareholders (fertiliser users) and the amount sold to them. They are selling both imported and domestically-produced synthetic fertiliser. This is purchased by fertiliser users and picked up from various distribution centres around the country. It is then applied by the users themselves or through an aerial or ground spreading company.

49 Ministry for the Environment & Stats NZ 2017: Infographic - New Zealand’s Environmental at a Glance (Link)
50 Parliamentary Commissioner for the Environment, 2018 Overseer and regulatory oversight: Models, uncertainty and cleaning up our waterways. Page 15 (Link)
53 Ibid
Internationally there are various parts of the synthetic fertiliser supply chain that have been regulated. Some have controlled synthetic fertiliser only at the point of use (on-farm), some have done so at the point of sale, and some at the point of import. Currently the synthetic nitrogen fertiliser cap in New Zealand is only regulating the on-farm use.

When considering how to apply a fertiliser cap in a jurisdiction it is appropriate to consider the “narrowest” part of the process. Regulating this narrow part enables clear regulations for control and easy parameters for monitoring, enforcement and compliance mechanisms. In New Zealand the narrowest point is clearly at the point of sale, given the market is dominated by two companies.

Greenpeace Recommendations

a. Based on the above evidence of synthetic fertiliser’s significant environmental impacts and the evidence of the ability to farm profitably without it, Greenpeace recommends a full and regulatory phase-out of synthetic fertiliser.

b. We recommend this is applied both on-farm and monitored and enforced by Regional Councils and at the point of sale, with vendors monitored, and regulation enforced by a central government agency.

c. Greenpeace recommends the initial limit be set at 60 kg/N/ha per year in 2021, reduced to 40 kg in 2022, 20 kg in 2023 and 0 kg by 2024.

d. At this point, in 2024, we recommend the regulation be widened to prohibit not only the sale and use of synthetic fertiliser but also its importation and production.

e. We recommend the Government invests in providing the support and infrastructure needed to help farmers wean off synthetic fertiliser, by making the investments laid out in our Regenerative Farming Fund Proposal.54

INTERNATIONAL REVIEW

Many jurisdictions have adopted synthetic fertiliser prohibitions or caps to avoid adverse effects. The following outlines some of these international examples and associated improvements in water quality.

a. **The European Union**: The European Union (EU) Nitrates Directive55 (1991) requires EU Member States to prohibit application of nitrogen above 170 kg/ha in NVZs (applies to synthetic and organic fertiliser) in designated Nitrate Vulnerable Zones (NVZs). It also allows States to completely prohibit fertiliser use in certain periods in NVZs. The data on nitrate concentration shows that water quality has improved in 2012-2015 compared to previous reporting period (2008-2011).56

b. The whole agricultural area in Denmark is a NVZ. As a result, there has been a 40% reduction in the nitrogen surplus of the country from 1980s-2010.57 Danish rules

considered successful with regard to the input control of fertiliser have included farm monitoring and obligatory reporting from fertiliser suppliers.58

c. \textit{Minnesota:} Minnesota has \textbf{prohibited the use of synthetic fertiliser} in Autumn and when the ground is frozen in designated “vulnerable groundwater areas” and “drinking water supply management areas. It also allows for the Government to set regional \textbf{caps and other controls on fertiliser} in areas with consistently high nitrate levels in groundwater. It is applicable to synthetic fertiliser only. The rule came into effect in January 2020 so we are not able to report water quality benefits yet.59

d. \textit{The state of Sikkim in Northern India:} Completely \textbf{prohibited not only the use of but also the import and sale of chemical fertilisers and pesticides} in 2014.60 Sikkim began its program to go fully organic, state-wide, in 2003. It started by reducing government subsidies on synthetic inputs by 10% each year coupled with major public funding, education and investment in transitioning its 66,000 farmers to certified organic.61 It has now achieved this transition, all farmers are certified organic and synthetic inputs are banned. \textbf{There has been a marked increase in water quality, which has in turn led to a significant rise in tourism, as the state now successfully markets itself as a health destination}62.

58 N.J Hutchings 2017. \textit{A case study of agricultural nitrogen management policy in Denmark, Vera Eory, Scotland's Rural College. Aarhus University. Page 6 (Link)}

59 https://www.mda.state.mn.us/nfr

60 http://www.lawsofindia.org/pdf/sikkim/2014/2014Sikkim10.pdf

Appendix 1