Turning Up the Heat
Global Warming and the Degradation of Canada’s Boreal Forest
Acknowledgements

The authors would like to thank the many individuals and organizations who helped to produce this report. Dr. Jay Malcolm and Dr. Sean Thomas of the University of Toronto Faculty of Forestry contributed immensely to the research and review of this report. Richard Brooks, Melissa Filion, Kim Fry, Rolf Skor, Dr. Janet Cotter, Dr. Jeff Wells, Phil Aikman, and Nicolas Mariville all gave valuable feedback on various drafts. Dr. Christoph Thies, Oliver Salge, and Justin Podur reviewed and commented on the technical report on which this report is based in part. Cheryl Johnstone copy edited the text, and Aaddin Diakun helped with production. Finally, we would like to thank Global Forest Watch, the Boreal Songbird Initiative, and CPAWS Wildlands League for providing maps, graphics, and photos.

Photos credits: Todd Korol/Aurora/Getty Images, Garth Lenz, J Henry Fair, J.D. Taylor, Ducks Unlimited, Jay Forsyth, Daniel J. Cox/NaturalExposures.com, CP/Thunder Bay Chronicle/Jamie Smith
Glossary

Aboveground carbon: The carbon stored in a forest’s aboveground biomass (i.e., in its trees and plants), as opposed to the carbon stored in its soils.

Albedo: The ratio of radiation an ecosystem reflects into space relative to the radiation it intercepts.

Carbon: An element present in all organic compounds. Represented by the symbol “C”. Carbon is present in the atmosphere as carbon dioxide (CO₂) gas.

Carbon dioxide: A greenhouse gas. Represented by the symbol “CO₂”.

Carbon sequestration: The removal and storage of carbon from the atmosphere.

Carbon sink: An ecosystem that removes more carbon dioxide from the atmosphere than it emits.

Carbon stock, or store: The carbon stored within an ecosystem.

Deforestation: The direct, human-induced conversion of forested land to non-forested land.

Disturbance: An event that causes a change in structure or composition of a forest. A disturbance can be natural (e.g., fire, insect outbreak) or human-caused (e.g., logging).

Fragmentation: The breakup of an intact forest area, e.g., by logging or road building.

Greenhouse gas: A gas that contributes to the greenhouse effect. Carbon dioxide, methane, nitrous oxide, and three groups of fluorinated gasses (sulphur hexafluoride, hydrofluorocarbons and perfluorocarbons) are all greenhouse gasses.

Intact forest: An area of forest in its natural state, unbroken by roads or other human infrastructure. Describes non-treed areas within the forest zone (e.g., swamps and peatlands) in addition to treed areas.

Methane: A greenhouse gas. Represented by the symbol “CH₄”.

Paludification: A process whereby newly melted soils become saturated with water.

Peat: An accumulation of partially decayed vegetation matter, formed when decaying plant matter from mosses, sedges, grasses, shrubs, or trees accumulates in permanently waterlogged conditions. Peat forms in wetlands or peatlands, also referred to as bogs, moors, muskegs, and mires.

Permafrost: Soil that remains frozen throughout the year.
Executive summary

Canada’s Boreal Forest is dense with life. Richly populated with plants, birds, animals, and trees; home to hundreds of communities; and a wellspring of fresh water and oxygen, the Boreal has long been recognized as a critically important ecosystem. But as rising temperatures threaten to destabilize the planet, the potential of the Boreal’s carbon-rich expanses to mitigate global warming continues to be underestimated.

Based in part on a comprehensive review of scientific literature by researchers at the University of Toronto, this report examines the complex relationship between global warming and Canada’s Boreal Forest. It finds that the intact areas of the Boreal are not only actively helping to slow global warming, but are also helping the forest itself to resist and recover from global warming impacts. These unfragmented areas are also helping trees, plants, and animals to migrate and adapt in response to changing climate conditions.

At the same time, however, it finds that logging is destabilizing the Boreal Forest in ways that may exacerbate both global warming and its impacts. The forest products industry and government regulators adamantly deny that logging in Canada’s Boreal affects the climate. But research shows that when the forest is degraded through logging and industrial development, massive amounts of greenhouse gasses are released into the atmosphere, and the forest becomes more vulnerable to global warming impacts like fires and insect outbreaks. In many cases, these impacts cause even more greenhouse gasses to be released, driving a vicious circle in which global warming degrades the Boreal Forest, and Boreal Forest degradation advances global warming. If left unchecked, this could culminate in a catastrophic release of greenhouse gasses known as “the carbon bomb”.

For these reasons, the report concludes that greenhouse gas emissions must be drastically reduced and that intact areas of Canada’s Boreal Forest must be protected—for the sake of the forest, and for the sake of the climate.

Global warming is already having an impact on Canada’s Boreal Forest

With global warming causing warmer, drier conditions in parts of the Boreal Forest, droughts, forest fires, and insect infestations are all on the rise. Drought stress has already increased, particularly in western Canada, as have forest fires. While fires are a natural part of the Boreal ecosystem, they’re becoming longer, more frequent, and more intense as time goes on—and the more intense forest fires get, the more carbon they release into the atmosphere. Warmer temperatures are also leading to destructive insect outbreaks. The damage caused by the mountain pine beetle and other major defoliating insects in the Boreal is already severe, and is projected to increase as temperatures continue to rise. Lastly, while early predictions suggested that warmer temperatures would enhance tree growth, more recent research shows that higher temperatures are actually reducing the growth and survival of some Boreal trees.

Global warming is predicted to cause additional problems in the Boreal as well. As tree, plant, and animal species migrate at different rates to adapt to changing temperatures, for example, interdependent relationships may be disrupted.
These disruptions, combined with other predicted problems, could lead to die-offs in species already at risk, including the woodland caribou, the wolverine, and the American marten.

Large intact areas of the Boreal Forest better resist and recover from global warming impacts

Research suggests that intact areas of the Boreal Forest—those areas that remain in their natural states—will be better able to resist and recover from global warming impacts than those areas fragmented by roads, logging, mining, or other human activity. By maintaining stable local climates, intact forests shield the trees, plants, and animals within them from the rapid and sometimes erratic changes happening in the broader climate, giving them more time to migrate and adapt. And when trees, plants, and animals do migrate, intact forests provide the contiguous corridors they need in order to do so successfully. Further, because they tend to have more mature trees and higher levels of biodiversity compared to areas that have been logged, intact areas of the Boreal Forest will be better able to resist and recover from global warming impacts such as drought, forest fires, and insect outbreaks.

Intact areas of the Boreal Forest are helping to mitigate global warming

The Boreal plays a vital role in curbing global warming by absorbing carbon dioxide out of the atmosphere and storing it in its trees and soils. Canada’s Boreal Forest stores an estimated 186 billion tonnes of carbon, an amount equal to 27 years worth of carbon emissions from the burning of fossil fuels worldwide. Eighty-four per cent of this is stored in the forest’s soils.

Intact areas of the Boreal are also helping to mitigate global warming by slowing the melt of Canada’s expansive areas of permafrost. When permafrost melts, large quantities of carbon dioxide and methane—a greenhouse gas 21 times more potent than carbon dioxide—are released into the atmosphere. Given the rapid warming happening across the Boreal, widespread permafrost melt is likely. But research shows that intact forest cover may delay thawing by decades or even centuries.

Logging is destabilizing the Boreal Forest and contributing to global warming

With over 750,000 hectares (1.85 million acres) of the Boreal Forest cut every year, logging is exacting a considerable toll on the climate. An estimated 36 million tonnes of aboveground carbon is directly removed from the Boreal each year by logging alone—more carbon than is emitted each year by all the passenger vehicles in Canada combined. And this number doesn’t account for the additional carbon lost from the forest’s soils, or for the 68,000 hectares (168,028 acres) deforested each year through the construction of logging roads and landings. Further, research shows that logged areas continue to emit carbon long after the trees have been removed—often for 10 years or more—as the amount of carbon emitted through decomposition and decay outstrips the amount of carbon absorbed by young, growing trees.
Logging also contributes to carbon dioxide and methane emissions by accelerating permafrost melt, and weakens the forest’s ability to resist and recover from global warming impacts. By reducing the diversity of the forest, logging makes it more vulnerable to diseases, insect outbreaks, and other threats. And by eliminating the intact corridors that animals, trees, and plants need in order to migrate and adapt, it reduces the ability of the ecosystem as a whole to function and thrive.

Setting the carbon bomb

If left unchecked, these problems could culminate in a catastrophic scenario known as “the carbon bomb”: a massive release of greenhouse gasses into the atmosphere driven, for example, by a widespread outbreak of forest or peat fires. As Greenpeace first warned in its 1994 report *The Carbon Bomb*, because Canada’s Boreal Forest contains so much carbon, a rapid release into the atmosphere could cause a disastrous spike in global emissions.

Solutions

Reducing greenhouse gas emissions from fossil fuels and stopping tropical deforestation have both been widely recognized as measures essential for curbing global warming. As this report shows, safeguarding Canada’s Boreal Forest is vital as well. Yet under current legislation, only 8.1 per cent of the large intact areas of Canada’s Boreal are protected from industrial development, while more than 45 per cent of its treed areas are under license to logging companies. Greenpeace is calling on government and industry decision-makers around the world to help protect Canada’s Boreal Forest from destructive industrial development. Only through immediate and comprehensive action can we save what’s left of the Boreal, and ensure that the global climate remains a liveable one.

The carbon cycle

Carbon is one of the most common elements on earth. It exists in biological materials as carbon (C), and in the atmosphere as carbon dioxide (CO₂). It is so common, in fact, that life on earth is described as “carbon-based”. Carbon moves naturally between its four major pools—vegetation, soils, fossil fuels, and the atmosphere—in a process known as the carbon cycle.

All organisms, whether living or dead, exchange carbon with their surroundings. Trees, for example, absorb carbon dioxide from the atmosphere through photosynthesis, store it as carbon within their tissues and fluids, then return it to the atmosphere as carbon dioxide through respiration.

In a natural ecosystem, this process is largely a balanced one. But fossil fuel burning, deforestation, and other human activities have caused massive amounts of stored carbon to be released into the atmosphere very rapidly, amplifying the greenhouse effect and disrupting the Earth’s climate.
Introduction

Global warming is believed to be the most serious environmental threat facing the planet today. From fires to floods to hurricanes, its impacts are already being felt around the world. And leading climate scientists warn that if we allow global temperatures to rise more than 2 degrees Celsius above the global norm, up to 30 per cent of plant and animal species risk extinction, and about 15 per cent of ecosystems are likely to be seriously affected.38
By the numbers

- At 545 million hectares, or 5.45 million square kilometres (1.3 billion acres), Canada’s Boreal Forest encompasses almost 53 percent of Canada’s total landmass, and includes 90 percent of Canada’s remaining intact forest landscapes.
- Over the next 50-100 years, the Earth’s boreal regions could experience temperature increases of between 4 and 10 degrees Celsius.
- Canada’s Boreal Forest stores 186 billion tonnes of carbon, equal to 27 years’ worth of global carbon emissions from the burning of fossil fuels.

Forests play an essential role in regulating the global climate. They sequester and store carbon, they conserve biodiversity, and they stabilize local climates. But the world’s last great forests—the Amazon, the Congo, the Boreal, the Paradise forests of Asia-Pacific—are all actively threatened by logging and other industrial activity. While due attention is starting to focus on tropical forests, the role of northern forests in mitigating global warming continues to be underestimated.

In 1994, Greenpeace published a report titled The Carbon Bomb: Global Warming and the Fate of the Northern Boreal Forests, which called on policy and decision makers to “radically rethink and change energy policies and logging practices in boreal forest countries in order to protect and preserve the climate and biodiversity.” Fourteen years later, that call is even more urgent. Since The Carbon Bomb was published, scientific consensus around the reality and risks of global warming has solidified, public support for solutions has rallied, and the consequences of ignoring a looming crisis have become all too real. But political and corporate action have been weak.

And as a result, greenhouse gas emissions continue to rise, while the forest continues to be degraded. Between 1990 and 2005, Canada’s greenhouse gas emissions rose by 25 percent (to 32.7 percent over Canada’s Kyoto target), and 41 percent of the treed area of the Boreal Forest has already been fragmented by logging and industrial development.

This new report is based in part on a comprehensive review of scientific literature by researchers at the University of Toronto and therefore reflects the most current state of knowledge on the relationship between global warming and the Boreal Forest. We urge government and industry decision-makers in Canada and abroad to consider its findings seriously, and to take the immediate action necessary to protect the forest and the climate.

Introduction

By the numbers

- An average of 84 per cent of the carbon in the Boreal Forest is stored in its soils.
- Mature areas of the Boreal can contain over 80 tonnes of carbon per hectare in their trees and aboveground vegetation.
- Research has shown that some Boreal trees continue to accumulate carbon at well over 200 years of age.
- As much as 7,600,000 hectares (18,780,000 acres) of forest—an area larger than Ireland—burn in Canada each year.
- According to one study, the area of North American Boreal burned by forest fires doubled between 1970 and 1990.
- The area of forest lost to insects in the Boreal is up to eight times greater than the area burned by forest fires.
- Over 750,000 hectares (1.85 million acres) of the Boreal Forest—an area almost six times larger than New York City—is logged every year.
- Roughly 30 million tonnes of aboveground carbon are removed from Canada’s Boreal Forest each year by logging alone—more carbon than is emitted each year by all the passenger vehicles in Canada combined.
- In addition, an estimated 68,000 hectares, or 168,028 acres, per year—an area larger than the city of Toronto—is directly deforested for the construction of logging roads and landings.
- In many cases it takes over 100 years for the carbon stocks in logged forests to return to pre-logging levels.
- Increases in air temperature of only 1–2 degrees Celsius have the potential to thaw out large expanses of discontinuous permafrost.
- In the western Boreal Forest, a 1.6-fold increase in carbon dioxide release and a 30-fold increase in methane release associated with melting permafrost have already been documented.
- Under current legislation, only 8.1 percent of the large intact areas of Canada’s Boreal Forest are protected from industrial development.
- More than 45 percent or 154 million hectares (382 million acres), of the treed area of the Boreal is under license to logging companies.
Canada’s Boreal Forest stretches across the country, from the Yukon Territory in the west to the province of Newfoundland and Labrador in the east. At 545 million hectares, or 5.45 million square kilometres (1.3 billion acres), it encompasses almost 53 per cent of Canada’s total landmass, and includes 90 per cent of Canada’s remaining intact forest landscapes. Its treed area covers 310 million hectares (766 million acres), while the remaining 235 hectares (581 million acres) comprise peatlands and other treeless areas.
The Boreal Forest encompasses a diverse and awe-inspiring landscape of granite outcrops, lakes, rivers, and marshes, interspersed with pine, spruce, fir, aspen, and poplar forests. Numerous wildlife species, including moose, caribou, lynx, bear, wolverine, and wolf, live in its vast expanses. At least three billion birds, including eagles, hawks, owls, and geese, accounting for 30 per cent of North America’s songbirds and 40 per cent of its waterfowl, nest in its forested areas and wetlands.

Canada’s Boreal Forest also contains a rich cultural legacy and is a source of sustenance for many of the indigenous peoples of Canada—the First Nations and Métis. Almost 80 per cent of Canada’s more than one million aboriginal people live in more than 600 communities in Canada’s forest regions, the majority in the Boreal Forest. Many of these communities depend on the wilderness, water, and wildlife of these places for their livelihoods and cultures.

Global warming and the Boreal Forest

Over the next 50–100 years, the Earth’s boreal regions could experience temperature increases of between 4 and 10 degrees Celsius. As the planet’s atmosphere undergoes a doubling or even tripling of atmospheric CO₂ concentrations, the Boreal Forest will come under increasing stress. Climate modellers generally agree that the pole-ward regions of the globe, including the Boreal Forest, will experience the largest increases in temperature under global warming.

These temperature increases are likely to hit the Boreal Forest hard, as its physical and ecological characteristics are closely tied to variations in climate. Canada’s Boreal Forest is vast, and its structure and composition vary across the landscape.

This variance is largely driven by two climatic gradients: one south-to-north, and one east-to-west. From south to north, solar radiation decreases, as do temperature and light intensity; from east to west, precipitation decreases and the frequency of natural fires increases. Because the Boreal Forest is so closely tied to these climate gradients, it is likely to undergo large and rapid changes under warming conditions.

The Earth’s green crown

Canada’s Boreal Forest is immense, but it comprises only a fifth of the great boreal forest that encircles the northern hemisphere. In its entirety, the global boreal forest covers 25 million square kilometres of land, or 11 per cent of the Earth’s land surface. Sometimes called “the Earth’s green crown”, it ranges from Alaska in the far west, throughout Canada, across Norway, Sweden, and Finland, through Russia, and into parts of China, Mongolia, the northern Korean Peninsula, and northern Japan. Worldwide, the boreal forest holds an immense pool of carbon—approximately one quarter of the planet’s land-based carbon stock.

While this report is focussed on Canada’s Boreal Forest, its findings are of great relevance for boreal regions throughout the world. The boreal forests of Northern Europe, Russia, and Asia are closely related to Canada’s Boreal Forest. As the world’s climate continues to warm, these forests are likely to undergo similar impacts. Ultimately, therefore, a pan-boreal perspective is needed to safeguard the world’s great northern forests and the enormous stores of carbon contained within them. The conclusions and recommendations made in this report, while in many ways specific to Canada’s Boreal Forest, should serve as a resource for research and action in boreal regions worldwide.
It’s already begun:

Global warming is having an impact on Canada’s Boreal Forest

The Boreal Forest is already being affected by global warming. A large body of recent scientific research shows that warmer, drier conditions in the Boreal are intensifying droughts, forest fires, insect infestations, and other serious problems in many areas of the forest, while the few anticipated benefits of warmer temperatures, such as larger, faster-growing trees, are not coming to fruition.

What’s worse, many of the impacts of global warming on the Boreal Forest are themselves causing greenhouse gases to be released into the atmosphere, driving a vicious circle in which global warming degrades the Boreal Forest, and Boreal Forest degradation advances global warming.
Drought is increasing

In the Boreal, when temperatures increase, so does the potential for water limitation. With temperatures rising due to global warming, drought stress has already increased in parts of the Boreal Forest, particularly in western Canada—and tree growth and carbon sequestration have already begun to suffer as a result.

Lack of water has already been linked to growth declines and reduced carbon absorption across the Boreal Forest. In northwestern Alberta, for example, recent droughts have resulted in dieback and stunted growth in aspen trees. Likewise, drought stress has been correlated with range limitations and reduced growth in white spruce, one of the most widespread and important trees in the Canadian Boreal, when temperatures cross a critical threshold of two degrees above the local norm.

As temperatures continue to rise, lack of water availability is expected to play a continuing role in limiting the growth and survival of Boreal trees—especially in the drier parts in west-central Canada—compromising the health of the forest as well as its ability to sequester carbon.

Forest fires are becoming more frequent and more intense

Forest fires are a natural and integral part of the Boreal ecosystem, and a critical driver of its vegetation dynamics. But as temperatures continue to rise, these fires are becoming longer, more frequent, and more intense—resulting in widespread carbon emissions across the region.

In the Canadian Boreal, fires recur anywhere from once every 50 years in dry regions, to once every 500 or more years in moist regions. Under the current changes in environmental conditions, however, the forest’s fire cycles are speeding up.

As much as 7,600,000 hectares (18,780,000 acres) of forest—an area larger than Ireland—burn in Canada each year. While fire cycles and trends vary regionally, with more fires occurring in western Canada than eastern Canada, for example, the increasing frequency of fires across the Boreal overall has been well documented, especially over the last 30 years, as has the increase in area burned by these fires. According to one study, the area of North American Boreal burned by forest fires doubled between 1970 and 1990.

The intensity of fires is increasing as well. The damage and degradation caused by warmer temperatures and drier conditions is providing more and better-quality fuel for forest fires, increasing their intensity and severity. This is important in the context of global warming because, while particularly hot, intense fires often lead to strong forest regeneration, they also exact a particularly large toll in terms of carbon emissions. When fire frequency and intensity increase, correspondingly larger amounts of carbon dioxide are released into the atmosphere.

As temperatures continue to warm, the trend toward more frequent, longer, more intense fires in parts of the Boreal is projected to continue, driving the vicious circle wherein global warming causes carbon to be released from the forest, and the carbon that’s released worsens global warming.

Insect outbreaks are spreading across the country

Insect outbreaks are another devastating impact of global warming on the Boreal Forest. Historically, many species of insects common to the Boreal died off during the winter months when temperatures reached low levels. Under global warming, however, winter temperatures are not reaching their usual lows, and many insects are surviving throughout the winter where they wouldn’t have in the past. The result is increased insect population growth, and severe damage to forests across Canada.
The highest-profile example of these climate-induced insect outbreaks is the ongoing mountain pine beetle outbreak in the western provinces of British Columbia and Alberta. Where the mountain pine beetle’s population and range have historically been limited by freezing winters, warmer temperatures have allowed it to survive over the winter months (see Figure 1). The resulting devastation has been intense. According to the most recent recordings, the area of forest lost to insects in the Boreal is up to eight times greater than the area burned by forest fires. The pine beetle is currently moving east across the country, doing more and more damage to the Boreal Forest. In addition to the mountain pine beetle, the spruce bark beetle and all three major defoliating insects—spruce budworm, jack pine budworm, and forest tent caterpillar—have all been shown or are projected to have increased impacts on the forest as a result of climate warming.

Like drought and fire, the problems caused by the mountain pine beetle, the budworm, and other insects are only expected to increase as climate warming continues.

Trees in some areas are growing more slowly and are at risk of experiencing more damage.

Recent evidence shows that warming temperatures are reducing the growth and survival of some Boreal trees. This is somewhat surprising because in the past, Boreal trees have often thrived in warm growing seasons. In fact, the well-established relationship between warmer temperatures and enhanced tree-growth once led to speculation that climate warming would lead to larger, faster-growing trees, especially in the more northern climes of the Boreal Forest. Further study, however, has revealed that the relationship between temperature and growth in Boreal trees is neither linear nor indefinite. In other words, it’s not necessarily true that the warmer it gets in the Boreal, the bigger and faster trees will grow.

Instead, it appears that trees have optimum temperatures above which growth starts to level out or decline. A study of spruce trees in Alaska, for example, demonstrated that white spruce trees had responded positively to small increases in temperature but then declined when mean temperatures rose above a critical threshold (see Figure 2). Along these lines, research suggests that while climate warming may increase Boreal Forest growth initially, warming beyond a certain threshold will actually result in growth reductions. Some studies suggest that this point has already been reached, and that the Boreal is no longer benefiting from warmer temperatures. A 1998 survey of over 300 high-latitude sites across North America and Eurasia, for example, found that wood density was no longer responding to increasing temperature as predicted by a linear model. A number of studies also show reductions in tree diameter in response to warmer growing seasons. As the climate warsms, temperature thresholds may be reached for an increasing number of species, reducing growth rates across the Boreal Forest.

Warming temperatures can compromise tree survival as well. When temperatures fluctuate close to the freezing point, ice-crystal formation can give trees “frost burn” and other injuries. Climate warming is predicted to increase the risk of freeze-thaw damage in Boreal tree species, especially given the relatively large increases in winter temperatures in northern latitudes consistently predicted by climate models. This damage, combined with reduced growth and the damage caused by drought stress, high fire frequency, and pest damage, means that on balance Boreal trees will suffer, not thrive, under warming conditions.

Turning Up the Heat: Global Warming and the Degradation of Canada’s Boreal Forest
Mountain pine beetle (MPB) cold-mortality thresholds. The annual number of days in which temperatures fell below the threshold for mountain pine beetle mortality has decreased over the last fifty years across British Columbia, and this is the likely cause of dramatic increases in infestations. After Stahl K, Moore RD, McKendry IG (2006). Climatology of winter cold spells in relation to mountain pine beetle mortality in British Columbia, Canada. Climate Research 32, 13.

Predicted and observed annual tree ring increments of Alaskan white spruce over the last 100 years. The dashed line represents expected tree ring growth based on local temperature data, and the solid line represents actual tree ring growth. These results suggest that above a temperature threshold of 11.3 degrees Celsius, ring growth is no longer positively related to temperature. After D’Arrigo RD, Kaufmann RK, Davi N, Jacoby GC, Laskowski C, Myneni RB, Cherubini P (2004). Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada. Global Biogeochemical Cycles 18.
Wildlife habitats are shifting

Under global warming, animals and birds will face environmental shifts more rapid than those encountered in much of the paleological record104,105. In the Boreal, many animals will respond to increasing temperatures by shifting their ranges northward106. While this will help them to survive under changing conditions, no species can travel north indefinitely. Water bodies and the treeline will act as boundaries for many species as they move northward, resulting in overall range contractions107.

Of course, climate adaptations won’t be confined to the Boreal. As Boreal species are migrating north to cope with a warming climate, more southerly temperate-zone species will likely be moving north as well, a dynamic which may cause conflicts and disruptions108. There are 25 species, for example, that have ranges bound by the Arctic Ocean to the north and that are likely to face pressure from species migrating from the south. Described in one paper as “the species with nowhere to go,” these include the arctic fox, the red fox, the grey wolf, the caribou, the moose, the muskox, the grizzly bear, the black bear, the polar bear, the lynx, and the wolverine109.

Further, it is assumed in most models that as temperatures warm and animals move northward, the plants upon which animals depend will shift northward as well110,111, resulting in communities that essentially remain the same but shift northward over time. Unfortunately, the migrations of different plant and wildlife species are unlikely to happen at the same rates112. Because mismatches in rate of shift are likely to occur among interdependent species, substantial problems could result113,114, including increased novel patterns of competition among animal species115.

Furthermore, animal populations can typically shift range much more quickly than can plant populations, increasing the possibility of mismatches between appropriate climate conditions and other necessary habitat features: an animal species may move north to cope with increasing temperatures, only to find that the plant species necessary to sustain it have not yet made the same shift. Such mismatches have already resulted in increased mortality for bird populations116. These sorts of mismatches could occur among different animal populations as well, disrupting predator-prey relationships117.

Research suggests that lower snowfall levels118 could reduce the survival of species such as the threatened woodland caribou119, the lynx, and the snowshoe hare120. Add this to the fire- and insect-related disturbances detailed above, and wildlife, including the woodland caribou, the wolverine, and the American marten (all federally listed species of special conservation concern121), could face die-offs due to global warming.
It's already begun: Global warming is having an impact on Canada's Boreal Forest.
Bigger is better:

Large intact areas of the Boreal Forest better resist and recover from climate impacts

As detailed above, the Boreal Forest is already being affected by global warming, and it is at risk of undergoing even more serious impacts if current trends continue. The frequency and intensity of drought, fire, and insect outbreaks are already rising in some parts of the Boreal, while the health and survival of trees, plants, and wildlife are declining. Global warming is degrading the forest, while Boreal Forest degradation, in turn, is contributing to global warming.

Not all landscapes are equally vulnerable, however. Research suggests that intact areas of the Boreal Forest—those areas that remain in their natural states—will be better able to resist and recover from climate impacts than those areas fragmented by human activity. Forests that are unmarred by roads, logging operations, powerlines, or other imposed infrastructure have an ability to moderate the local climates experienced by individual trees and animals, have higher levels of biodiversity, and have more reproductively mature trees. All these factors make intact forests crucial to slowing global warming and mitigating its impacts.
Intact forests moderate local climates

Large intact forest landscapes create their own microclimates, and these microclimates buffer the forest, its trees and its wildlife from many of the shifts and extremes felt in the broader regional climate. By maintaining stable local climates, intact forests shield trees, plants, and animals from the rapid and sometimes erratic changes happening in the broader climate, and create a slower rate of shift that allows more time for adaptation and migration.

By absorbing heat in the summer and radiating heat in the winter, intact forests maintain more stable temperatures throughout the year, reducing temperature stress and freeze-thaw damage in both spring and fall\(^\text{122,123}\). They also stabilize temperatures by keeping the soil several degrees cooler in late spring and summer and several degrees warmer in late fall and winter compared to the soil in open areas such as clearcuts, delaying freezing in autumn and snowmelt in the spring\(^\text{124}\).

Another way microclimates protect forests from climate impacts is by limiting drought stress. Compared to other forests, intact forests store more water when it’s in excess and release water when it’s in shortage, thus compensating for irregularities. As well, because snow melt starts sooner and lasts longer in intact forests compared to the bare-ground areas found in clearcut forests\(^\text{125}\), the former have more stable supplies of water year-round. Clearcut and bare-ground areas lose water rapidly—something which may delay the recovery of disturbed and logged forests\(^\text{126}\), especially given the projected increase in extreme precipitation and drought events across the Boreal Forest.

Intact forests have higher levels of biodiversity

The more genetic diversity a forest has, both within and among tree and plant species, the greater likelihood that forest has of resisting and surviving climate impacts. Tree and plant biodiversity helps intact forests to withstand existing global warming impacts, and acts as insurance against unknown future changes and disturbances.

Ecological theory in general predicts that forests with a greater variety of species are more likely to persist over time\(^\text{127,128}\). This is because not all species are affected by disturbances in the same way. The greater the number of tree and plant species found in a forest, the more limited an impact any single disturbance will have on the forest as a whole\(^\text{129,130}\).

This is particularly important in the case of the Boreal, since it is naturally dominated by only a few tree species and is therefore especially vulnerable to species diversity loss. Because intact Boreal Forest landscapes have greater tree species diversity than managed, second-growth Boreal Forest landscapes\(^\text{131}\), they are expected to be more resilient in the face of disturbances\(^\text{132,133,134}\).

In addition to diversity between species, research has shown that high genetic diversity within any given species is likely to enhance that species’ resistance to global warming impacts\(^\text{135}\) and its ability to adapt to shifting climate conditions. Studies have found that European birch, for example, possesses “warm year” and “cool year” genotypes that improve its survival under differing conditions\(^\text{136,137}\). “Warm year” seeds give rise to seedlings that are better adapted to warmer climates, while still adapted to local environmental conditions such as soil type and nutrient availability\(^\text{138,139}\). Such seedlings are therefore better adapted to local conditions than southern genotypes that have migrated north\(^\text{140}\).

Intact forests with a higher proportion of mature trees may be able to continue this type of adaptation by producing “warm year” and “warmer year” genotypes as temperatures rise\(^\text{141,142}\).
Intact forests provide corridors for plant and tree migration

As temperatures rise, the climate conditions that characterize the Boreal biome will shift northward, and many plant and tree species will respond to these shifting climate conditions by migrating northward along with them. Conifer species, for example, are predicted to expand into tundra landscapes as temperatures warm\(^\text{143}-\text{145}\). The forest-tundra boundary has already moved north in Alaska, and arctic shrub cover has been increasing north of the treeline as well\(^\text{146}-\text{147}\).

This kind of migration is slow, however, and requires certain conditions. In order for it to occur, genes must be able to flow between forest stands. Intact forest landscapes help facilitate this flow\(^\text{148}\), whereas fragmented landscapes may impede it\(^\text{149}\). Because of their high connectivity and their abundant production of seeds, cones, and other propagules, landscapes within the Boreal Forest that are intact and contiguous will be best able to keep up with rapidly changing climate conditions\(^\text{150}\).

Intact forests regenerate more successfully

In addition to resisting and adapting to climate impacts, intact forests are better able than fragmented forests to regenerate after natural disturbances have occurred.

This is largely because intact forests tend to have more reproductively mature trees than do fragmented forests. This is true even where natural disturbances such as forest fires and insect outbreaks have occurred. Unlike clearcut logging, where the largest and oldest trees are targeted for cutting, many natural disturbances leave a substantial proportion of reproductively mature trees behind\(^\text{151}\). Mature trees are the most robust in the face of climate disturbances; and once the disturbances subside, they are the most able to repopulate the area.

By producing seedlings that are genetically adapted to the unique environment into which they are born, these mature trees help a forest to recover better than it would with human intervention. Because manually planted seedlings may have been imported from another region or microclimate, they are less likely to thrive than their naturally seeded native counterparts.

Intact forests help wildlife to migrate and adapt

Intact forest landscapes give wildlife the best chances of surviving in a rapidly changing environment, by providing functional corridors for migration and stabilized local climates for adaptation over time.

Intact forests help wildlife migrate by providing the kind of contiguous travel corridors that are lacking in fragmented forests. The southern flying squirrel, for example, has migrated north through the more contiguous forests of south-eastern Ontario, allowing it to extend far to the north of its historic range\(^\text{152}\), but has failed to migrate through the more fragmented sections in the south-west\(^\text{153}\). While modern logging methods have attempted to mimic natural disturbances by leaving corridors and retention blocks, studies have shown that these are insufficient for many species\(^\text{154}\).

Intact forests help wildlife to adapt, as well. A wealth of recent evidence indicates that many animal species are already responding to global warming by exhibiting earlier breeding seasons\(^\text{155}\), earlier migration\(^\text{156}\), and multiple generations per season. If change is too rapid, however, species may not be able to adapt quickly enough to keep up\(^\text{157}\). Intact forest landscapes help this situation by slowing the rate of change across the landscape, moderating the local climate, and providing alternate habitats\(^\text{158}\).
Bigger is better: Large intact areas of the Boreal Forest better resist and recover from climate impacts

Large intact forest landscapes in Canada’s Boreal Forest

Legend

- Boreal Region
- Forestry Tenures
- Large Intact Forest Landscapes
- Fragmented Forest Land
- Tree cover < 10%
- Provinces and Territories

Note: Large Intact Boreal Forests Landscapes represents a contiguous mosaic of natural ecosystems greater than 50,000 hectares in the Boreal Forest landscape, essentially undisturbed by human influence. This map was generated through the use of Landsat imagery acquired during the approximate epochs of 1990 and 2000.

Data Sources:

Projection: Lambert Conformal Conic
Central Meridian: -92.0
Standard Parallel 1: 49.0
Standard Parallel 2: 77.0
False Northing: 0.0
False Easting: 0.0
Latitude of Origin: 49.0

0 750 1500 2250 3000 km
Save the south, protect the north

Most of the remaining intact forest landscapes in North America are part of the northernmost expanses of Canada’s Boreal Forest. More remote, less accessible, and as yet unallocated for industrial logging, these northern areas have undergone far less fragmentation than the more southern reaches of the forest. For this reason, they appear at first glance to provide the best opportunities for conservation. In the context of global warming, however, failing to protect what remains of the more fragmented south directly jeopardizes the future of the vast north.

The more southern areas of the Boreal Forest have long been subject to human influence and impacts, and as a result little mature forest remains. Owing to closer proximity to roads, mills, towns, and transportation infrastructure, logging in the southern Boreal has long been more intense, and its forest landscape is much more heavily fragmented, according to satellite imagery, for example, less than 26 per cent of the commercial or southern Boreal Forest in the province of Ontario remains intact. Still, the more southern areas house a unique biological richness, containing the most diverse assemblages of species within the Boreal. This high level of biodiversity makes protecting the southern Boreal essential, even though its remaining forest landscapes are smaller and more fragmented than those farther north. A number of bird, mammal, and tree species reach their northern limit in the southern Boreal Forest, intermingling with Boreal species that are at their southern limit to form diverse communities. This intersection of southern and northern Boreal plants and wildlife creates a unique ecosystem that cannot be replaced.

In the context of global warming, however, conservation of the dwindling intact areas of the more southern Boreal Forest takes on added importance, as it becomes essential for facilitating the adaptation and migration that will allow the northern Boreal to survive in a changing climate. The many plant and tree species that straddle the northern and southern areas of the Boreal will be able to use pre-adapted genotypes from southern areas to survive in warming conditions in more northerly landscapes. These genotypes have the potential to migrate north over many generations, but this cannot occur unless wide, intact forested north-south corridors are maintained.
Bigger is better: Large intact areas of the Boreal Forest better resist and recover from climate impacts.
Storing carbon, slowing melt:

Intact Boreal landscapes are mitigating global warming

As we have seen, the intact areas of Canada’s Boreal Forest have the potential to help the forest as a whole to resist and recover from the negative impacts of global warming. By stabilizing the local climate and housing diverse species and genotypes, they help plants and animals alike to adapt, migrate, and ultimately survive under rapidly changing conditions.

At the same time, intact Boreal Forest landscapes are playing a key role in mitigating global warming itself on a global scale. By storing massive amounts of carbon and slowing permafrost melt, intact areas of the Boreal Forest are slowing the release of carbon and methane into the atmosphere, curbing the overall feedback loop between forest degradation and global warming.
Intact forests sequester and store carbon

The Boreal Forest stores massive amounts of carbon. In fact, the world’s boreal forest ecosystems contain almost a quarter of the world’s land-based carbon stocks171, 172. According to one estimate, Canada’s Boreal Forest stores 186 billion tonnes of carbon173, equal to 27 years’ worth of global carbon emissions from the burning of fossil fuels174.

In most temperate and tropical forests, carbon is stored mainly in live tree tissues. In Canada’s Boreal, however, it is soils that serve as the primary carbon storehouses over much of the region. With 1.5 to 2 million lakes and enormous peatlands stretching across its landscape, the Boreal is rich in belowground carbon. An average of 84 per cent of the carbon in the Boreal Forest is stored in its soils175.

Trees still play an important role in carbon sequestration, however—even more so than previously believed. Traditionally, mature forests have largely been viewed as carbon neutral176, meaning that once a forest had reached maturity, it was assumed to have stopped sequestering carbon. More recently, however, studies have found that many forests continue to sequester carbon as they age. One such study, for example, found that old-growth spruce, aspen, and jack pine forests were all moderate carbon sinks177. Another found that black spruce continued to sequester carbon for over 140 years178 (see Figure 3), and others found similar results in mature ponderosa pine and subalpine forests179, 180. Another estimated that white spruce stands were still accumulating carbon at well over 200 years of age181. This appears to hold for other forest types as well. Recent studies of ancient temperate forests have documented surprisingly large carbon sinks182, 183, 184, 185, and old-growth tropical forests appear to operate as strong carbon sinks as well186, 187, 188.

These findings are important, as they mean that forest cutting and removal not only results in losses in existing carbon stocks, but also results in lowered sequestration until the regenerating forest returns to previous carbon storage levels.

Figure 3
Carbon absorption and respiration in black spruce over time

Black spruce chronosequence showing net ecosystem productivity (NEP, or carbon absorption by plants), net primary productivity (NPP, or carbon absorption by plants and carbon release by soils), and respiration (R). Mature stands continued to show positive NEP for over 140 years, particularly in wetter stands. After Bond Lambert B, Gower ST, Goulden ML, McMillan A (2006). Simulation of boreal black spruce chronosequences: Comparison to field measurements and model evaluation. Journal of Geophysical Research Biogeosciences 111.
Is the Boreal a net carbon sink or a net carbon source?

Recently, questions have been raised about whether Canada’s Boreal Forest remains an overall carbon sink, or whether it has become an overall carbon source. As discussed above, many of the impacts of global warming on the Boreal Forest are causing carbon to be released into the atmosphere, tipping the balance between how much carbon the forest absorbs from the atmosphere in a given year and how much it releases back into the atmosphere.

The documented switch from a net carbon sink to a net carbon source has been attributed primarily to increased fire and insect outbreaks under changing climate conditions, but the situation is exacerbated by high levels of logging. While natural disturbance levels can vary greatly, logging represents about 25 per cent of the Canadian Boreal Forest area lost in a given year; and because industrial-scale logging is conducted in high-volume, high-carbon areas (that is, older-growth stands) and removes future woody debris that would remain on the forest floor under natural circumstances, researchers have concluded that it likely results in disproportionately high carbon losses compared to natural disturbances like forest fires and insect outbreaks. Logging, therefore, appears to be playing an important role in the possible conversion of Canada’s Boreal Forest from an overall carbon sink to an overall carbon source.

It is important to understand, however, that regardless of whether the Boreal Forest is a net sink or a net source on an annual basis, it continues to store massive amounts of carbon. In order to maintain and promote carbon storage, therefore, it remains essential to protect the Boreal, especially its most carbon-rich intact and old-growth areas.

Intact forests slow permafrost melt and methane release

Intact forests slow permafrost melt and methane release. In addition to storing carbon, intact Boreal Forest landscapes are helping mitigate global warming by slowing permafrost melting. Permafrost—soil that remains frozen throughout the year—covers approximately 24 per cent of the exposed land area of the northern hemisphere. Over 60 per cent of the permafrost area is capable of supporting thick vegetation cover, including forests.

Permafrost melt and the soil saturation that results could exacerbate global warming by releasing large amounts of greenhouse gasses into the atmosphere. As permafrost melts, it releases carbon dioxide and methane into the atmosphere through rapid soil respiration and paludification, a process whereby newly melted soils become saturated with water. When paludification occurs, the water-logged soil emits large amounts of methane, a greenhouse gas 21 times more potent than carbon dioxide. According to current global warming projections, both permafrost loss and paludification are expected to increase. In the western Boreal Forest, a 1.6-fold increase in carbon dioxide release and a 30-fold increase in methane release associated with melting permafrost have already been documented.

Given the rapid warming across the Boreal, widespread permafrost melt is likely—increases in air temperature of only 1–2 degrees Celsius have the potential to thaw out large expanses of discontinuous permafrost. But intact forest cover may delay this thaw by decades or even centuries. Intact forests’ moderated microclimates insulate permafrost from warming air temperatures, and the permafrost layer under intact forests is thicker and more stable throughout the year compared to the permafrost under adjacent tundra or clearcut landscapes.

Intact forests may also reduce the amount of methane released from permafrost when it does melt. The soil in forested areas generally stores less moisture than bare ground or tundra areas because of the high water demands of forest vegetation. In sample plots, this reduced soil moisture content has been associated with reduced methane release.
Storing carbon, slowing melt: Intact Boreal landscapes are mitigating global warming

Soil organic carbon in Canada’s Boreal Forest

Legend

Soil Organic Carbon

<table>
<thead>
<tr>
<th>kg/m²</th>
<th>Total Mass (10⁶ kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5</td>
<td>1649386.2</td>
</tr>
<tr>
<td>5 - 8</td>
<td>2633896.0</td>
</tr>
<tr>
<td>8 - 11</td>
<td>4506816.7</td>
</tr>
<tr>
<td>11 - 14</td>
<td>5564298.1</td>
</tr>
<tr>
<td>14 - 17</td>
<td>6068277.7</td>
</tr>
<tr>
<td>17 - 21</td>
<td>7415389.2</td>
</tr>
<tr>
<td>21 - 25</td>
<td>7504343.0</td>
</tr>
<tr>
<td>25 - 30</td>
<td>7864842.3</td>
</tr>
<tr>
<td>30 - 37</td>
<td>8034572.9</td>
</tr>
<tr>
<td>37 - 44</td>
<td>9257180.0</td>
</tr>
<tr>
<td>44 - 53</td>
<td>9379578.0</td>
</tr>
<tr>
<td>53 - 62</td>
<td>11259393.3</td>
</tr>
<tr>
<td>62 - 74</td>
<td>11456214.7</td>
</tr>
<tr>
<td>74 - 91</td>
<td>14815011.0</td>
</tr>
<tr>
<td>91 - 113</td>
<td>14897605.4</td>
</tr>
<tr>
<td>113 - 141</td>
<td>16548074.7</td>
</tr>
<tr>
<td>141 - 178</td>
<td>17733110.4</td>
</tr>
<tr>
<td>178 - 238</td>
<td>18668759.0</td>
</tr>
<tr>
<td>238 - 357</td>
<td>25635476.3</td>
</tr>
</tbody>
</table>

Data Sources:

Projection: Lambert Conformal Conic
Central Meridian: -95.0
Standard Parallel 1: 49.0
Standard Parallel 2: 77.0
False Easting: 0.0
False Northing: 0.0
Peatlands in Canada’s Boreal Forest

Legend

Peatlands (% of area)

0-10
10-20
20-30
30-40
40-50
50-60
60-70
70-80
80-90
90-100

Boreal Canada

Data Sources:
ESRI Data & Maps, 2006.
*Inverse Distance Weighted Interpolation applied to source data.

Projection:
Lambert Conformal Conic
Central Meridian: -95.0
Latitude of Origin: 49.0
Standard Parallel 1: 49.0
Standard Parallel 2: 77.0
False Easting: 0.0
False Northing: 0.0
Storing carbon, slowing melt: Intact Boreal landscapes are mitigating global warming

Permafrost in Canada’s Boreal Forest

Legend
- Permafrost (Extent)
 - Continuous
 - Discontinuous
 - Sporadic
 - Isolated Patches
- Boreal
- Water

Data Sources:
ESRI Data & Maps, 2006.

Projection:
Lambert Conformal Conic
Central Meridian: -95.0
Latitude of Origin: 49.0
Standard Parallel 1: 49.0
Standard Parallel 2: 77.0
False Easting: 0.0
False Northing: 0.0
The albedo effect

Although most of the literature related to global warming and forests focuses on the storage and release of greenhouse gasses, forests interact with the climate via other mechanisms as well. Primary among these is a phenomenon known as the albedo effect. Albedo describes the extent to which an ecosystem absorbs or reflects back the sun’s rays. Defined as the ratio of radiation reflected into space relative to the total radiation intercepted by an ecosystem, albedo essentially describes the reflectivity of an area. Areas with high albedo reflect large amounts of solar radiation back into space, whereas areas with low albedo absorb large amounts of radiation. This is relevant to global warming because forests tend to have low albedo compared to non-forested areas, especially during periods of snow cover. And low-albedo areas—that is, areas that absorb large amounts of heat—can contribute to climate warming.

One recent study on this subject received considerable media attention in Canada and abroad: it reported a finding that deforestation of the Boreal would result in climate cooling due to the albedo effect. The 2007 study by Bala et al. concluded that “afforestation projects in high latitudes would be counterproductive in mitigating global-scale warming”221. This study was preceded by a 1992 study that concluded that removal of trees from logging and other disturbances could result in a cooling effect, especially pronounced in boreal forest areas during the winter222.

These studies, while interesting, are misleading. By over-estimating the potential cooling effects of albedo following logging, and underestimating the potential carbon losses associated with Boreal deforestation, they paint an unrealistic picture. These shortcomings stem from the studies’ bases in limited models and simulations.

Both the 2007 study and the 1992 study rely on direct biome substitution to simulate deforestation—that is, they rely on a modelling scenario whereby they replace the physical attributes of an area of boreal forest with the physical attributes of a grassland, then compare the properties of the two. This modelling strategy has several critical limitations.

First, it doesn’t account for the losses of soil carbon associated with logging. Because most carbon in the Boreal Forest is stored belowground, the potential carbon losses associated with logging or other types of forest clearing may have been drastically underestimated. Second, biome substitution does not take into account forest re-growth. In reality, large-scale logging in the Boreal would not result in a replacement of forests with grasslands, but rather in a replacement of old, mature forests with young, regenerating stands. This would almost certainly result in large losses of carbon, with only small changes in albedo. Third, neither of these modelling studies has used actual data on the albedo of post-disturbance boreal forest landscapes in their simulations. Changes in albedo are complex and influenced by many factors, including exposure and duration of snow cover; stand structure; surface roughness; and forest species composition223, 224, 225. Following fire, for example, there is generally a short-term reduction in growing-season albedo due to blackened surfaces226, 227.

While forested areas do generally absorb more solar radiation than non-forested areas, this dynamic alone does not rationalize the deforestation of the Boreal. Even if deforestation did reduce the albedo of an area (which is not clear based on the research done to date), this would not compensate for the massive amounts of greenhouse gas release and lost sequestration potential that would result.
Storing carbon, slowing melt: Intact Boreal landscapes are mitigating global warming
Making a bad situation worse:
The destabilizing role of logging

The Boreal Forest is being destabilized by global warming. Climate gradients are shifting, plants and animals are migrating, and fire cycles are accelerating. Where intact landscapes have the potential to slow these changes and stabilize both the climate and the forest, industrial-scale logging has the potential to do just the opposite. By releasing carbon, fragmenting the landscape, reducing biodiversity, and accelerating permafrost loss, logging in Canada’s Boreal Forest may both worsen global warming and weaken the forest’s ability to withstand its impacts.
Logging releases massive amounts of carbon

As discussed above, old-growth forests contain more carbon than younger forests (see the section “Intact forests sequester and store carbon”, above)228. In addition to the massive amounts of carbon stored in their soils, mature areas of the Boreal can contain over 80 tonnes of carbon per hectare in their trees and aboveground vegetation229, 230. When these areas are logged, this aboveground carbon content is reduced to almost inconsequential levels231. While some government and industry analysts claim that the aboveground carbon removed by logging is stored in forest products, this argument does not hold (see the section “Do forest products store carbon?”, below).

In addition to largely eliminating the carbon stocks represented by living trees, clearcut logging results in much lower levels of woody debris than would result from natural disturbances such as fire or insect-caused defoliation232. This has serious consequences for carbon storage because as woody debris decomposes, much of the carbon within it becomes part of the soils beneath. In this way, woody debris is the source of much of the carbon eventually stored for long periods in the forest’s soil233.

Woody debris levels are reduced even more drastically when forests are subjected to salvage logging (that is, logging following a natural disturbance such as fire or a pine beetle outbreak). One study, for example, found that more carbon was lost from salvage logging after a forest fire than from the fire itself234, 235. Intensive extraction projects such as biofuel harvesting have the potential to do extensive damage as well, removing large amounts of carbon that would otherwise remain in the ecosystem236.

Just how much belowground carbon is lost from soils during logging remains a matter of some debate: some studies have shown significant losses of soil carbon following logging237, 238, while others have failed to find such losses239, 240. What is clear, however, is that when trees are removed, the underlying soil is subjected to an extreme increase in heat exposure. Previously sheltered by trees, the soil is suddenly warmed by direct sunlight, leading to warmer conditions and increased soil decomposition241. This decomposition results in carbon emissions, as reflected in studies that have found that young, regenerating forests are losing carbon242, 243, 244. In some cases it takes decades before logged stands start sequestering more carbon through growth than they’re emitting through decay245.

All these factors lead to large carbon losses when forests are logged. One study found that total carbon stocks were reduced by up to 54 per cent in spruce forests following logging246. Another found that sites assessed four years after logging contained 80 tonnes of carbon per hectare less than 75-year-old stands of Scots pine247. Yet another found that a five-year-old jack pine site had 40 tonnes of aboveground carbon per hectare less than a 79-year-old stand248.

Considering the extent of logging across Canada’s Boreal Forest, the implications of this carbon loss are dramatic. Over 750,000 hectares (1.85 million acres) are logged every year249—an area almost seven-and-a-half times larger than New York City. While carbon levels vary across the landscape, if an intermediate level of 40 tonnes of carbon per hectare of aboveground carbon is used250 and is projected across the approximately 750,000 hectares of Boreal Forest logged in Canada each year, then roughly 30 million tonnes of aboveground carbon are removed from Canada’s Boreal Forest every year by logging alone—more carbon than is emitted each year by all the passenger vehicles in Canada combined251. And this doesn’t even include the carbon lost from the forest’s soils.
Logged areas continue to emit carbon for years

In addition to the carbon removed during logging itself, research shows that forests continue to emit carbon after they’ve been logged—often for 10 years or more—because of the damage and decay incurred through logging. As the decomposition of soils and woody debris outpaces the re-growth of trees and other vegetation, carbon continues to be lost, making many young, regenerating stands carbon emission sources for more than a decade following logging.

Government and industry documents, however, are increasingly characterizing young regenerating forests as active carbon sinks that draw large amounts of carbon out of the atmosphere. A Natural Resources Canada fact sheet titled “Does Harvesting in Canada’s Forests Contribute to Global warming?”, for example, claims that logging does not cause substantial carbon emissions because “harvested areas regenerate to become forests again, so that in any year there is substantial new storage of carbon occurring in the areas previously harvested.” An article in an industry magazine goes further: “Indeed, there is a case for cutting more forest. This is not to condone the indiscriminate felling of old forests; they have enormous value as eco-systems full of irreplaceable life forms. Let us be clear, though: they absorb far less carbon dioxide than younger, fast-growing stands. And in a time of increasingly rapid global warming, we desperately need to increase CO₂ absorption.”

While replacing old stands with young ones may result in higher annual sequestration rates locally for the period when those young- and intermediate-aged stands are growing fastest, this cannot compensate for the carbon lost during and after logging through the loss of carbon-dense old-growth trees, and the disturbance and warming of carbon-rich soils. The fact is that industrial logging results in less carbon remaining within the ecosystem.

One study, for example, found that old-growth forest plots held up to 2.9 times more carbon than second-growth forests.

In many cases it takes over a century for the carbon stocks in logged forests to return to pre-logging levels. These forests’ carbon-storage potential is often cut short, however, as most logging in Canada’s Boreal Forest is conducted using rotation lengths between 50 and 100 years—at least twice the rate of pre-industrial fire regimes—preventing logged forests from ever achieving their maximum sequestration and storage potential.

Logging accelerates permafrost loss and methane release

Whereas intact forests slow permafrost melt, logging accelerates it. By removing the protective cover of forest vegetation, logging in permafrost areas exposes the cold and frozen soil to higher temperatures and solar radiation, accelerating melting and, as a consequence, greenhouse gas release (for example, see Figure 4). Industrial logging has been occurring in permafrost areas in Scandinavia and Siberia for decades, and has more recently begun in discontinuous permafrost areas in Canada. Research shows that further expansion north would have dramatic consequences, including rapid bog expansion, methane release, and carbon dioxide release.

When permafrost melts, the newly thawed soil becomes saturated with water. Without the high water demands of trees this effect is exaggerated, and logged areas experience increased bog formation and rising water tables. Not only does this release methane into the atmosphere, but the large, rapidly expanding bog landscapes that replace previously forested areas are largely resistant to forest regeneration, making the re-establishment of forest difficult if not impossible. Further, as the frozen ground thaws, soil respiration increases rapidly, contributing additional carbon to the atmosphere.
Making a bad situation worse: The destabilizing role of logging

Logging reduces the functional diversity of forests

Industrial-scale logging alters the structure and function of the Boreal Forest, reducing its diversity and, as a consequence, its resilience against climate impacts. By replacing a naturally diverse forest with one made up of uniformly aged trees with similar genetic make-ups, logging makes forests more vulnerable to diseases, insect outbreaks, and other threats.

In general, landscapes that have been logged are less diverse than natural landscapes, both in terms of species and in terms of the ages of their trees. Industrial logging decreases the prevalence of older stands across the landscape, while increasing the prevalence of single-species dominance. Through much of the southern Boreal, extensive logging has already resulted in a conversion of conifer-dominated systems to systems dominated by certain hardwoods, particularly aspen and/or paper birch.

The physical, chemical, and mechanical manipulations of the soil that go along with industrial logging are partly responsible for this species conversion. Slash—or woody debris—burning and the use of heavy machinery, for example, are associated with strong changes in species composition that can persist for decades.

Roads and other infrastructure created to facilitate logging access can have large impacts on the structure and function of the Boreal Forest as well. In addition to the direct and permanent deforestation caused by the construction of roads and yards (amounting to an estimated 68,000 hectares, or 168,028 acres, per year, an area larger than the city of Toronto), roads alter drainage patterns and other aspects of the physical environment, provide a corridor for the invasion of exotic species, and provide increased access to humans who further affect the forest through hunting, fishing, and fire ignition.

Average maximum thaw depths were determined by pounding a steel rod into the ground in forested (Site F) and clearcut (Site C) sample plots. For 2001 and 2002, maximum thaw depths were also determined by temperature profile. After Iwahana G, Machimura T, Kobayashi Y, Fedorov AN, Konstantinov PY, Fukuda M (2005). Influence of forest clear cutting on the thermal and hydrological regime of the active layer near Yakutsk, eastern Siberia. Journal of Geophysical Research 110.
Other types of industrial development, such as seismic survey lines, may have similarly large and long-lasting impacts as well289.

In all these ways, logging is homogenizing the Boreal Forest. The result is forests that are sensitive to impacts on those few species that remain. The conversion of mixed-wood forests to aspen-dominated forests in the Boreal, for example, has resulted in forests that are vulnerable to any disease or insect infestation that affects aspen trees290. This type of vulnerability is especially important in the context of increasingly frequent and severe climate impacts.

Logging removes natural wildlife habitats

Logging not only extirpates some wildlife species from their natural habitats but may also reduce their ability to adapt and migrate under changing climate conditions, putting numerous species in peril. By altering the composition of the forest, logging removes the habitat features many species need to survive; and by fragmenting the landscape, it leaves them without some of the options that would otherwise allow them to adapt under changing conditions.

While some Boreal animals can survive in a wide range of habitats, many others require very particular habitat types. Because of this, the homogenizing effects logging brings about in the structure and composition of a forest may have strong, negative consequences for wildlife. When the plants and trees comprising an area change, whether in terms of species makeup or in terms of age structure, the food and shelter available to wildlife change—sometimes in ways that make a previously hospitable area uninhabitable. Woodland caribou and American marten, for example, cannot thrive in an area without sufficient old-growth forest cover291, 292.

Habitat fragmentation lowers species survival as well293, 294, 295, 296. There are a number of reasons for this, including outright habitat loss, the creation of barriers to movement297, “edge effects” such as higher levels of predation and reduced interior habitat298, reductions in genetic variation, and higher susceptibility to local extinction following disturbance299. An average herd of woodland caribou, for example, requires 9,000 square kilometres (5592 square miles) of undisturbed wilderness, an area larger than most parks in Canada, and at least a 12-kilometre (7.5-mile) buffer between its habitat and forestry operations to survive300. The woodland caribou is now federally listed as a threatened species, with a Boreal population believed to number fewer than 33,000 animals301.

In a changing climate, the habitat fragmentation caused by logging becomes an even greater concern for wildlife, since intact corridors and connectivity are critical in facilitating climate-induced migration, as discussed above. Without sufficient corridors, an “island scenario” can be created, where pockets of intactness remain but animal and plant species are unable to successfully migrate between them.
Making a bad situation worse: The destabilizing role of logging
Do forest products store carbon?

Recently, the Canadian forest products industry and government regulators have been arguing that when forests are logged, the carbon stored within them is not released into the atmosphere, but is instead stored for long periods of time in forest products.\(^3\)\(^0\)\(^2\),\(^3\)\(^0\)\(^3\). Essentially, they claim that through manufacturing, carbon is transferred from living forests to forest products. Some go as far as to argue that logging Canada’s Boreal Forest actually helps to slow global warming, because the carbon stored in mature trees is transferred to long-lasting forest products, and then those trees are replaced with young, growing saplings which quickly absorb more carbon.\(^3\)\(^0\)\(^4\).

According to one government fact sheet, for example, the “combination of harvest and regrowth along with the storage of carbon in long-lasting forest products means that our forest management practices do not result in substantial emissions.”\(^3\)\(^0\)\(^6\). This argument does not live up to scientific scrutiny.

First, the simulations used to support the claim that carbon is stored in forest products use unrealistically long estimates of product half-life. For example, Colombo et al.\(^3\)\(^0\)\(^7\) assume that forest products lose less than 25 per cent of their carbon over 100 years, implying a half-life of over 240 years. By contrast, the “good practice” defaults set by the United Nations Intergovernmental Panel on Climate Change (IPCC) for analyses of this type are two years for paper and thirty-five years for sawn wood—\(^3\)\(^0\)\(^8\) a far cry from the 240 years used by industry and government studies in the province of Ontario. Other studies use product half-lives of between one and three years for paper, and between thirty and fifty years for sawn wood.\(^3\)\(^0\)\(^9\).

Second, this argument assumes that most if not all of the carbon from a logged forest is transferred to long-lasting forest products. Analyses of Douglas-fir forests suggest that after logging, most carbon is either stored in short-lived products such as paper, or lost during logging and processing—only a small fraction ends up in longer-term products such as dimensional lumber. Some of the logged carbon may also end up “stored” in landfills when products are disposed of; but little is known about how quickly forest products decompose in landfills, and the potential for increased methane emissions from decomposing products is high. Additionally, the increased use of incineration in municipal waste management seems likely to reduce the period of carbon storage in products sent to landfill, making estimates based on historical data inappropriate.

Third, this argument does not account for the additional carbon loss incurred through the road building, forest fragmentation, and storehouse damage associated with logging. As noted above, in addition to forests directly logged, an estimated 68,000 hectares (168,028 acres) per year is deforested through the construction of logging roads and landings. Because these areas are permanently deforested, they represent a permanent loss of carbon storage potential.

Lastly, this argument fails to account for the secondary emissions caused by the transportation, transformation, and distribution of forest products.
Making a bad situation worse: The destabilizing role of logging
Deforestation vs. forest degradation

In lay terms, the word deforestation is used to describe any cutting or clearing of trees. Technically, however, deforestation refers only to the direct, human-caused conversion of forested land to non-forested land—for example, the conversion of a forest to urban or agricultural land or to roads\(^{316}\).

According to the explanatory notes accompanying the definition of deforestation by the Food and Agriculture Organization (FAO) of the United Nations, "the term specifically excludes areas where the trees have been removed as a result of harvesting or logging ... unless logging is followed by the clearing of the remaining logged-over forest for the introduction of alternative land uses, or the maintenance of the clearings through continued disturbance, forests commonly regenerate, although often to a different, secondary condition"\(^{317}\). In this way deforestation is distinguished from forest fragmentation, which refers to the breakup of an intact forest area through logging, road-building, or other industrial activity; and from forest degradation, which refers more generally to the impoverishment of a forest area.

This difference in definitions is highly relevant with reference to technical reports, policy mechanisms, and carbon accounting schemes that deal with forests and global warming. The frequently quoted IPCC figure which attributes approximately one fifth of global emissions to deforestation\(^{318}\), for example, does not include emissions caused by forest fragmentation, degradation, or soil decay. Care must therefore be taken in the understanding and use of these terms.
Making a bad situation worse: The destabilizing role of logging
The carbon bomb

Forest fires, insect outbreaks, permafrost melting, and logging in Canada's Boreal Forest have the potential to worsen global warming, while industrial development has the potential to weaken the Boreal's resistance and resilience in the face of global warming's intensifying impacts. If left unchecked, this situation could culminate in a catastrophic scenario known as “the carbon bomb”.

The carbon bomb describes a massive release of greenhouse gasses into the atmosphere, driven, for example, by a widespread outbreak of forest or peat fires. As Greenpeace first warned in its 1994 report, The Carbon Bomb, because Canada's Boreal Forest contains 186 billion tonnes of carbon—27 times the world's annual fossil fuel emissions—a rapid release of its carbon into the atmosphere could cause a disastrous spike in emissions.
The drought and decay being caused by global warming, combined with the fragmentation caused by logging, have the potential to create a tinderbox in Canada’s north. Already, researchers are documenting an overall shift in the Boreal Forest from a net carbon sink to a net carbon source, due primarily to the increasing frequency and intensity of fires under warming climate conditions. The more that intact forests are fragmented and degraded, the more susceptible the Boreal will become to these fires, and the more intense the fires themselves are likely to become.

By altering drainage patterns and other conditions, logging in the northern Boreal could trigger even more damage, through large-scale peat fires. Because 84 per cent of the carbon in the Boreal Forest is stored in its soils, peat fires would be disastrous in terms of climate emissions. Such events are not unprecedented. In 1997, peat fires ignited across Indonesia, releasing between 0.87 and 2.57 billion tonnes of carbon into the atmosphere—an estimated 13–40 per cent of the global carbon emissions from fossil fuels in that year. While these fires were ignited by storms, the conditions for their ignition and spread were created in part by rapid industrial development. In 1995, the naturally waterlogged peatlands were logged and drained to create massive rice plantations. When a long drought came in 1997, the dried-out peat caught fire, releasing thousands of years’ worth of stored carbon in a matter of months.

Logging and other industrial projects in Canada’s Boreal Forest may be setting us up for a similar disaster. The drier and more fragmented the forest and its peatlands become, the more susceptible they will be to widespread, intense fires that threaten the rapid release of thousands of years’ worth of accumulated carbon from the Boreal’s trees and soils.

If protected, Canada’s Boreal Forest can continue to play its crucial role in storing carbon, moderating local climates, and slowing permafrost melt. But if logging and industrial development continue to cut into forests at their current pace and global temperatures continue to rise, the Boreal Forest could turn from one of the world’s most important carbon sinks to one of the world’s biggest carbon sources.

And the enormous stocks of carbon locked away in the Boreal’s trees and soils could become a serious threat to the global climate.

The domino effect

The Boreal, the Amazon, the Congo, the Paradise forests of Asia-Pacific—in a changing climate, the fates of all these great forests are linked. Forest ecosystems currently store about one-and-a-half times as much carbon as is present in the atmosphere. As the climate warms and deforestation and forest degradation accelerate, more and more of this stored carbon is being released into the atmosphere, driving feedback loops that compromise the survival of all the world’s forests.

Deforestation is one of the main causes of global warming, second only to practices in the energy sector. According to the IPCC, it accounts for about a fifth of all global emissions—more than the emissions from all the world’s cars, trucks, and airplanes combined. Deforestation also results in less forest area to reabsorb the carbon emitted to the atmosphere. Tropical forests in particular play a powerful role in mitigating the growing change in the climate, but they are rapidly being destroyed by industrial logging and deforestation for plantations and agriculture.

Already, rising global temperatures—caused in part by deforestation—are disrupting forest ecosystems around the world in ways that are provoking a feedback of more greenhouse gas emissions into the atmosphere through forest dieback, forest fire, and other means. Tropical forests in particular are critical to climate regulation, acting as a global cooling mechanism through the carbon they store, absorb, and cycle. But if temperatures continue to increase, tropical rainforests and peatlands could become sources of greenhouse gas emissions—increasing the likelihood that the Boreal will continue to transition from an annual carbon sink to an annual carbon source.
Solutions

Comprehensive solutions are needed to protect Canada’s Boreal Forest against the impacts of global warming; to reduce the current level of emissions being caused by logging and industrial development in the Boreal; and to avoid potentially massive releases of greenhouse gas emissions from the Boreal in the future. In order to avert dangerous global warming and protect the Boreal Forest from climate impacts, urgent action is needed on three fronts:
1 Intact areas of Canada’s Boreal Forest must be protected.

As detailed in this report, intact areas of Canada’s Boreal Forest are actively helping to slow global warming, both by storing massive amounts of carbon and by slowing permafrost melt and methane release. But with global temperatures on the rise, intact forests’ abilities to resist and recover from global warming impacts and to help trees, plants, and wildlife to adapt and migrate under changing climate conditions are proving just as crucial.

When the Boreal Forest is degraded through logging and industrial development, not only are massive amounts of greenhouse gasses released into the atmosphere, but the forest becomes increasingly vulnerable to global warming impacts like fires and insect outbreaks—in many cases, impacts that themselves cause more greenhouse gasses to be released. At the same time, animals, birds, and trees lose the stability they need in order to adapt and the corridors they need in order to migrate. In short, when the Boreal Forest is degraded by logging, both the climate and the forest face dramatic consequences.

Yet under current legislation, only 8.1 per cent of the large intact areas of Canada’s Boreal Forest are protected from industrial development. Meanwhile, 45 per cent, or 154 million hectares (382 million acres), of the treed area of the Boreal is under license to logging companies, mainly in the biologically diverse southern areas of the Boreal. Many of the last remaining intact pockets of the more southern Boreal are slated for logging in coming years and the immense intact areas of the north are facing increasing risk of fragmentation through expanded logging, mining, and oil and gas development. What remains is in urgent need of protection.

That is why Greenpeace is calling for a government-imposed, industry-supported moratorium on industrial development in all intact areas of Canada’s Boreal Forest.

A moratorium would make the most important areas of the Boreal off-limits to logging and other industrial development until an acceptable, comprehensive, science-based plan for its future management and protection is agreed to by First Nations, communities, governments, environmental organizations, and industry—a plan that’s sustainable for communities, for wildlife, and for the planet.

2 Greenhouse gas emissions from fossil fuels must be reduced.

To protect the Boreal Forest and the carbon stored within it, global warming must be slowed, through a drastic reduction in greenhouse gas emissions. The burning of fossil fuels is the number one contributor to greenhouse gas emissions, accounting for about 75 per cent of emissions worldwide. To curb global warming, therefore, the use of coal, oil, and gas must be drastically reduced, especially in the industrialized world, where emissions are the highest. The Greenpeace Energy Revolution scenario shows that emissions from the power sector can be reduced by 50 per cent by 2050 if a massive uptake of sustainable renewable energy options, a doubling of energy efficiency, and a decentralization of energy generation systems are achieved. Greenpeace is calling for industrialized-country emissions to be reduced by 18 per cent from 1990 levels for the second Kyoto commitment period, and by 30 per cent by the third period, covering 2018–2022.

3 Tropical deforestation must be stopped.

Second only to reducing fossil fuel burning, curbing tropical deforestation is one of the quickest, most effective ways to reduce greenhouse gas emissions. In addition to preserving global biodiversity, protecting these forests is crucial to stabilizing the climate, and therefore crucial to protecting the Boreal from intensifying global warming impacts. Greenpeace is calling for an end to deforestation in Indonesia and the Amazon rainforest—by far the two largest sources of greenhouse gas emissions from deforestation.
Conclusion

Canada has a critical opportunity to help slow global warming by protecting the Boreal Forest. But it is an opportunity which, if ignored, could turn into a serious liability. Because the Boreal stores so much carbon in its soils, trees, and peatlands, its potential to contribute to the solution is darkly underlaid with the potential to worsen the problem.

If Canada’s Boreal Forest is protected, it will continue to sequester and store carbon, and its intact landscapes will continue to help protect the forest and its inhabitants from the intensifying impacts of global warming. But if industrial development is allowed to continue its trajectory north, then what remains of the Boreal’s pristine expanses will be scarred with roads and clearcuts, it will become more and more vulnerable to insect outbreaks, fires, and melting, and the masses of carbon locked away in its soils and trees may be released into the atmosphere.

In 1994, Greenpeace urged policy and decision makers to radically rethink energy policies in industrialized countries and logging practices in the Boreal Forest. Since then, fourteen years have passed without sufficient action on either front. We cannot continue to watch and wait: leading climate scientists warn that if we’re to avert dangerous climate change, global greenhouse gas emissions must reach their peak by 2015 and then decline dramatically by mid-century. Governments and industry around the world must take immediate action to save what is left of Canada’s Boreal Forest, and to ensure that the global climate remains a liveable one.

In addition, changes in disturbance regimes that might give rise to changes in albedo would have large consequences for non-carbon dioxide radiative forcing agents (agents that force change in climate by altering the energy of Earth’s atmosphere, such as methane, nitrous oxide, and ozone). (Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB, Dale C, Minn A, 2007) Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences 104, 6550-6555.

317 Ibid.
