Dr. Sven Teske

THE MARKET HAS ALREADY DECIDED: WHY WE ARE HEADING TOWARDS 100% RENEWABLES

UNIVERSITY

Achieving the Paris Climate Agreement Goals

Global and Regional 100% Renewable Energy Scenarios with Non-energy GHG Pathways for +1.5°C and +2°C

Global Energy Status

FIGURE 1. Estimated Renewable Share of Total Final Energy Consumption, 2018

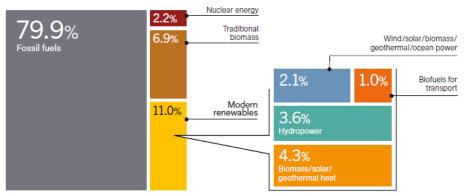
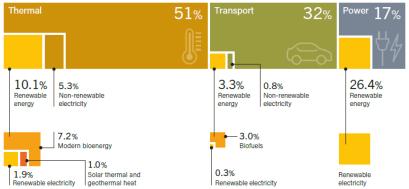
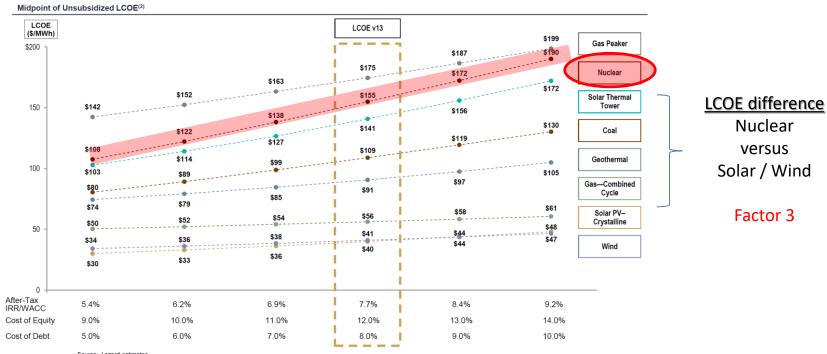



FIGURE 3. Renewable Share of Total Final Energy Consumption, by Final Energy Use, 2017

Global Trends in the Power Sector

Achieving the Paris Climate Agreement www.OneEarth.uts.edu.au


- New Power Generation Capacity mainly solar PV and Wind as most economic
- High shares of variable power generation = the end of base load power plants
- Digitalisation of electricity:
 - Decentralised generation and Storage
 - Consumer turn into Prosumer
- Sector-Coupling:
 - Increased electrification in transport and heating sector

Global Trends in the Power Sector - Costs

Levelized Cost of Energy Comparison—Sensitivity to Cost of Capital

A key consideration in determining the LCOE values for utility-scale generation technologies is the cost, and availability, of capital⁽¹⁾; this dynamic is particularly significant for renewable energy generation technologies

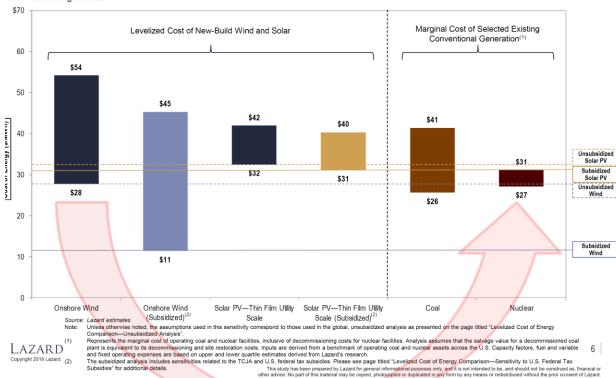
Source: Lazard estimates

Copyright 2019 Lazard

Note: Analysis assumes 60% debt and 40% equity. Unless otherwise noted, the assumptions used in this sensitivity correspond to those used in the global, unsubsidized analysis as presented on the page titled "Levelized Cost of Energy Comparison—Unsubsidized Analysis".

5

⁽¹⁾ Cost of capital as used herein indicates the cost of capital applicable to the asset/plant and not the cost of capital of a particular investor/owner


Reflects the average of the high and low LCOE for each respective cost of capital assumption.

Global Trends in the Power Sector

Levelized Cost of Energy Comparison—Renewable Energy versus Marginal Cost of **Selected Existing Conventional Generation**

Certain renewable energy generation technologies are approaching an LCOE that is competitive with the marginal cost of existing conventional generation

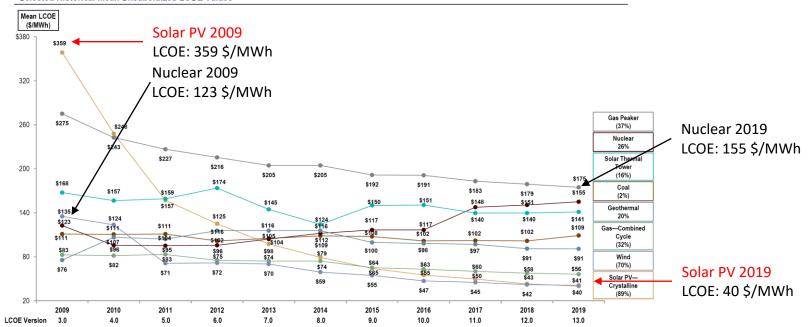
NEW BUILD Unsubsidized Utility scale

Onshore wind & PV

Reach marginal cost of

EXISTING

Coal + Nuclear Power Plants in the USA



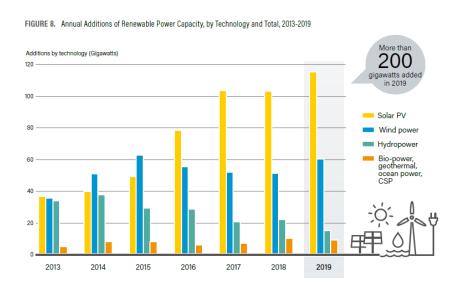
Global Trends in the Energy Sector

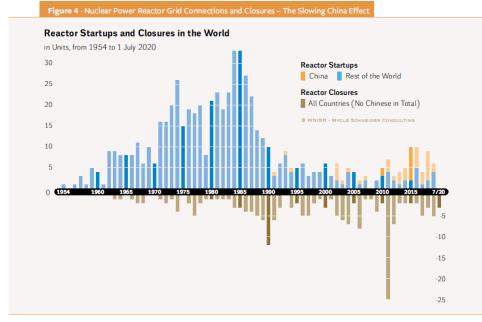
Levelized Cost of Energy Comparison—Historical Utility-Scale Generation Comparison

Lazard's <u>unsubsidized LCOE</u> analysis indicates significant historical cost declines for utility-scale renewable energy generation technologies driven by, among other factors, decreasing capital costs, improving technologies and increased competition

Selected Historical Mean Unsubsidized LCOE Values(1)

LAZARD Source: Lazard estimates.


Copyright 2019 Lazard


Copyright 2

Sources: WNISR, with IAEA-PRIS, 2020

2019: Solar + 115 GW Wind + 60 GW

= + 175 GW

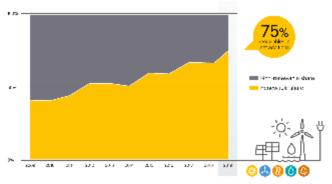
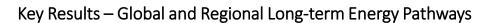

Nuclear: New capacities cannot replace closures

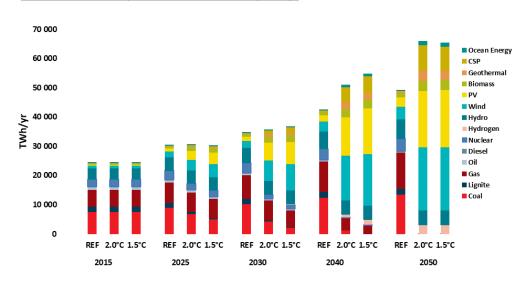
Table 1. Renewable Energy Indicators 2019


		2018	2019
INVESTMENT			
New investment (annual) in renewable power and fuels ¹	billion USD	296.0	301.7
POWER			
Renewable power capacity (including hydropower)	GW	2,387	2,588
Renewable power capacity (not including hydropower)	GW	1,252	1,437
Hydropower capacity ²	GW	1,135	1,150
♣ Wind power capacity	GW	591	651
Solar PV capacity ³	GW	512	627
Bio-power capacity	GW	131	139
@ Geothermal power capacity	GW	13.2	13.9
Concentrating solar thermal power (CSP) capacity	GW	5.6	6.2
Ocean power capacity	GW	0.5	0.5

Removable and Non-removable Shares of Net Aurual Additions in Power Benerating Capacity, 2009-2015


№ REN21 FERENVELESCED ELOSALS A USINE FOR.

Additional capacity


Sources: WNISR, with IAEA-PRIS, 2020

Changes in the database regarding closing dates of reactors or LTO status slightly change the shape of this graph from previous editions. In particular the previous "maximum operating capacity" of 2006 (overtaken in July 2019) is now at 367 GW.

Global: Electricity Generation and Capacity:

in GW		2015	2025	2030	2040	2050
Hydro	5.0°C	1 202	1 420	1 558	1 757	1 951
	2.0°C	1 202	1 386	1 416	1 473	1 525
	1.5°C	1 202	1 385	1 415	1 471	1 523
Biomass	5.0°C	112	165	195	235	290
	2.0°C	112	301	436	617	770
	1.5°C	112	350	498	656	798
Wind	5.0°C	413	880	1 069	1 395	1 790
	2.0°C	413	1 582	2 901	5 809	7 851
	1.5°C	413	1 912	3 673	6 645	7 753
Geothermal	5.0°C	14	20	26	41	62
	2.0°C	14	49	125	348	557
	1.5°C	14	53	147	356	525
PV	5.0°C	225	785	1 031	1 422	2 017
	2.0°C	225	2 194	4 158	8 343	12 306
	1.5°C	225	2 829	5 133	10 017	12 684
CSP	5.0°C	4	13	20	39	64
	2.0°C	4	69	361	1 346	2 062
	1.5°C	4	92	474	1 540	1 990
Ocean	5.0°C	0	1	3	9	22
	2.0°C	0	22	82	307	512
	1.5°C	0	22	80	295	450
Total	5.0°C	1 971	3 285	3 902	4 899	6 195
	2.0°C	1 971	5 604	9 478	18 243	25 583
	1.5°C	1 971	6 644	11 420	20 980	25 723

Thank you

Dr Sven Teske sven.teske@uts.edu.au

Global Report – Open Access Book for free download at Springer

https://www.springer.com/gp/book/9783030058425#aboutBook

© 2019

Open Access

Achieving the Paris Climate Agreement Goals

Global and Regional 100% Renewable Energy Scenarios with Non-energy GHG Pathways for +1.5°C and +2°C

Editors: Teske, Sven (Ed.)

Presents robustly modeled scenarios to achieve 100% renewable energy by 2050