1	Ronald A. Shems (pro hac vice)	
2	SHEMS DUNKIEL KASSEL & SAUNDERS PLLC	
3	91 College Street	
4	Burlington, VT 05401	
5	802 860 1003 (voice)	
6	802 860 1208 (facsimile)	
/		
8	Kichard Koos-Collins (Cal. Bar no. 127231)	
9 10	NATURAL REATINGE INSTITUTE	
10	Borkolov, CA 94704	
11	(510) 644 2900	
12	(510) 644-2500 (510) $644-4428$ (fax)	
14	(010) 044-4420 (lax)	
15	Attorneys for Plaintiffs	
16	Friends of the Earth Inc. Greenpeace Inc.	
17	City of Boulder CO City of Oakland CA	
18	City of Arcata, CA. Santa Monica, CA	
19		
20	UNITED STATES DISTRICT COURT	
21	NORTHERN DISTRICT OF CALIFORNIA	
22	SAN FRANCISCO DIVISION	
23		
24	FRIENDS OF THE EARTH, INC., et al.,)	
25) Civ. No. C 02 41	$06 \mathrm{JSW}$
26	Plaintiffs,)	
27	v.) Date: February 1	11,2005
28) Time: 9 A.M.	
29	PETER WATSON, et al.,) Courtroom 2, 17	th Floor
30)	
31	Defendants)	
32		
33		
34	DECLARATION OF RICHARD HEEDE	
35	I RICHARD HEEDE declare as follows:	
55	1, ITOTATO TILEDE, declare as follows.	
36	1. I received Bachelor of Arts and Sciences degrees in Env	ironmental
27	Studiog (with minor in Feanamics) and in Dhilosophy from the Uni	
57	Studies (with minor in Economics) and in Philosophy from the Uni	versity of
38	Colorado in 1976. I received a Masters in Arts and Sciences in Geo	graphy from the
	1	
	Civ. No. C 02 4106 JSW DECLARATION OF RICHARD HEEDE	
		i Plaintins Exhi

Plaintiffs' Exhibit #1

University of Colorado in 1983 with a thesis in climate change supported by a fellowship from the National Center for Atmospheric Research in Boulder,
Colorado (A World Geography of Recoverable Carbon Resources in the Context of Possible Climate Change, NCAR-CT-72).

2.I worked with Amory Lovins and the Rocky Mountain Institute from 1984 to 2002. My work at RMI included publishing two books, several book-length reports, and dozens of journal and magazine articles. The work focused on efficient use of energy, climate mitigation, and related policy and national security issues that resulted in a broad range of publications, including: residential energy efficiency and retrofits (Homemade Money: Saving Energy and Dollars in Your Home and The Energy Directory), energy policy ("Hiding the True Costs of Energy," Wall Street Journal, "Energy Policy," Changing America: Blueprints for the New Administration), commercial-sector energy efficiency (Electricity-Saving Office Equipment), climate mitigation (Cool Citizens: Everyday Solutions to Climate Change: Household Solutions Brief, and Oberlin College: Climate Neutral by 2020). This latter year-long project included a comprehensive inventory of greenhouse gas (GHG) emissions for a mid-western U.S. college, audits of campus energy use and expenditures, and a suite of practical recommendations designed to profitably reduce emissions of GHG from 46,000 tonnes of carbon dioxideequivalent per year to net zero by 2020.

3. In 1999 I wrote a guide to establishing simple and accurate measures of a country's carbon dioxide emissions and other economic and environmental 2

metrics for teams established in nearly 60 countries worldwide by Helio International in Paris. The manual makes such sets of indicators readily comparable from year to year as well between participating nations. The guide-Measuring Energy Sustainability: Evaluating Your Country's Energy Development—was published in 2000. I reviewed sections of the first edition of WBCSD/WRI's Greenhouse Gas Protocol: a corporate accounting and reporting standard. In 2002-2003 I served as reviewer of several emissions verification

reports conducted by Climate Neutral Network for its corporate members.

4. In 2002 I founded Climate Mitigation Services, a consultancy in climate mitigation and emissions inventories serving non-profit organizations, municipal governments, professionals, and individuals. In this capacity I conducted a major study of historic greenhouse gas emissions of the largest oil company in the world. The report *ExxonMobil Corporation Emissions Inventory* 1882-2002 analyzed emissions sources (both corporate and operational emissions and emissions from combustion of its marketed energy products) since its incorporation as Standard Oil in 1882 through to the merger of Exxon and Mobil corporations in 2000. The emissions accounting methodology substantially informed the scope of the present work on direct and indirect emissions from the Export-Import Bank of the United States (Ex-Im) and the Overseas Private Investment Corporation (OPIC) energy-sector investments.

Origin and Objectives of the Project

5. This declaration summarizes estimates of the direct, indirect and cumulative greenhouse gas (GHG) emissions from projects financed by Ex-Im and OPIC from 1990 through 1999 and, where possible, estimates of emissions from Ex-Im and OPIC-financed projects approved from 1999 through 2003. I made material use of reports issued by Ex-Im and OPIC in 1999 and 2000, respectively.¹ I was asked to estimate both direct and indirect emissions from the projects approved by these two federal agencies as well as review and improve the methodology used to estimate direct and indirect emissions. I summarize project-level emissions annually as well as cumulatively over the expected operating lives of Ex-Im and OPIC fossil fuel extraction and power generation projects.

Emissions Estimation Protocol

6. This accounting of carbon dioxide and methane emissions from Ex-Im Bank and OPIC-financed fossil-fuel electric generation and oil and gas extraction, processing, and transportation projects, adopts most of the guidelines for corporate and national accounting protocols as described in the World Business Council for Sustainable Development (WBCSD) and World Resources Institute's (WRI) jointly issued *Greenhouse Gas Protocol*, the Intergovernmental Panel on

¹ Export-Import Bank of the United States (1999) *Ex-Im Bank's Role in Greenhouse Gas Emissions and Climate Change*, Engineering and Environment Division, August, 59 pp. Overseas Private Investment Corporation (2000) *Climate Change: Assessing Our Actions*, Washington, 53 pp. All reports cited in this Declaration and in the attached spreadsheets are fully referenced in Attachment A.

Climate Change (IPCC) guidelines for national emissions accounting, and the reporting guidelines for the oil and gas sector developed by the International Petroleum Industry Environmental Conservation Association (IPIECA) and the American Petroleum Institute (API). Unlike the emissions inventories published by Ex-Im and OPIC, I include the combustion of oil and gas products by ultimate consumers of those products whose extraction, refining, and delivery results from projects financed or insured by Ex-Im and OPIC as indirect emissions.

7. This declaration's purpose is to summarize the results and the methodology used to estimate the direct, indirect, and cumulative GHG emissions of projects financed by Ex-Im and OPIC as required by the National Environmental Policy Act (NEPA).

8. NEPA requires an assessment of the indirect and cumulative impacts of projects under agency review. Indirect impacts cannot be adequately assessed without estimating both direct and indirect emissions from OPIC and Ex-Im assisted energy projects. The term "indirect" has two different connotations. NEPA's requirement refers to an assessment of indirect impacts of agency activities on environment and society, including trans-boundary impacts to the global commons; in this case "indirect" refers to unintended *consequences* from the agencies' direct activities—investments in energy projects that emit greenhouse gases—that increase atmospheric concentration of carbon dioxide, and that, therefore, contribute to climate change. My inventory protocol's use of the term refers to indirect *emissions* of greenhouse gases inevitably emitted to the

Civ. No. C 02 4106 JSW DECLARATION OF RICHARD HEEDE

atmosphere as a result of the energy projects assisted by Ex-Im and OPIC. An assessment of Ex-Im and OPIC impacts on the global climate cannot be done without a full accounting of all emissions of greenhouse gases, both direct and indirect. Neither Ex-Im nor OPIC have estimated indirect emissions (nor have they estimated all direct emissions). My report seeks to correct the agencies' flawed and incomplete accounting by including all direct and most (but not all) indirect emissions from projects financed or otherwise assisted by Ex-Im and OPIC.

9. This comprehensive accounting of all emissions from Ex-Im and OPIC supported projects is appended to this declaration as Attachment B. This analysis details the methodology, assumptions, data sources, and calculations used to generate the results summarized in this declaration. The work estimates direct and indirect emissions from Ex-Im and OPIC-financed energy projects in two principal sectors: 1. the electricity sector (construction of fossil-fueled power plants), and 2. the oil and gas sector (extraction, refining, and transportation of oil and gas resources):²

17

² I exclude several relatively minor emissions sources, e.g., cement manufacturing, fuel consumed by aircraft purchased by foreign operators and financed by Ex-Im or OPIC, direct and indirect emissions from the buildings occupied or owned by Ex-Im and OPIC, emissions from other Ex-Im and OPIC operations (conferences, foreign offices, field work, domestic and international travel), and emissions from industrial machinery and commercial enterprises financed by Ex-Im and OPIC.

1	• Electricity generation & power plants:
2	1. Direct emissions from fuel consumed at coal, oil, and gas-fired
3	power plants, ³
4	2. Indirect emissions from fuel combusted at power plants: 4
5	A. Coal: transport from mines to power plants;
6	B. Coal: fugitive methane from coal mines (in carbon-equivalent units);
7	C. Oil: flared gas at oil production facilities;
8	D. Oil: energy inputs at oil refineries;
9	E. Oil: energy input to oil transportation and delivery
10	F. Oil: fugitive methane from oil production and delivery (carbon-equiv);
11	G. Gas: flaring at natural gas production facilities;
12	H. Gas: CO ₂ vented from natural gas extraction and operations;
13	I. Gas: energy inputs at gas processing and transportation;
14	J. Gas: fugitive methane from gas production and delivery (carbon-equiv).

³ My accounting methodology is similar to that used by Ex-Im Bank (1999) and OPIC (2000) and accounts for the emissions factor of each power plant type, its heat rate, and fuel consumed. Two methodological differences are worth noting: instead of applying assumed 25-year operating lives for all power plants regardless of fuel and generator types (as Ex-Im and OPIC did), coal-fired power plants have operating lives of about 60 years, gas-fired units about 40 years, and oil-fired generators last about 30 years. This increases each power plant's emissions over its operating life, and corrects significant under-estimates in the Ex-Im and OPIC reports. Second, this report uses varying capacity factors for each plant type: 90 percent for coal-plants, 85 percent for gas units, and 80 percent for oil-fired generators (Ex-Im and OPIC apply an 85 percent capacity-factor across the board).

⁴ As noted above, neither the Ex-Im nor the OPIC reports estimate indirect emissions. This report estimates these indirect emissions from the agency-funded energy-sector investments. It must be noted, however, that this estimator lacked access to agency information on each project's technical specifications that makes it difficult to generate a complete estimate. As a result, these estimates may underestimate actual emissions. However, it is certain that indirect emissions are not zero, which is the value conveyed by Ex-Im's and OPIC's failure to account for such emissions. The estimates presented in this report are, in my expert opinion, based on a reasonable methodological approach given the information available. Each agency may chose to refine this estimate in future reports with more detail from its own data on each project's technical specifications.

1	• Oil and natural gas extraction, processing, delivery, and
2	consumption:
3	1. Direct emissions from oil and gas operations: ⁵
4	A. Oil: flared gas at oil production facilities;
5	B. Oil: energy inputs at oil refineries;
6	C. Oil: energy input to oil transportation and delivery;
7	D. Oil; fugitive methane from oil operations;
8	E. Gas: flared gas at gas production facilities;
9	F. Gas: energy inputs at gas processing facilities;
10	G. Gas: energy input to gas pipelines;
11	H. Gas: fugitive methane from gas operations.
12	2. Indirect emissions from oil and gas sector:6
13	A. Oil: oil products combusted by ultimate consumers (net of non-fuel uses of
14	~9.0%);
15	B. Gas: natural gas combusted by ultimate consumers (net of non-fuel uses
16	of $\sim 2.9\%$).

⁵ This report estimates several sources of direct emissions from oil and gas extraction, refining, and delivery. Neither Ex-Im nor OPIC estimate any direct emissions from the oil and gas sector, although both agencies acknowledge the protocol to do so. It must again be emphasized that Ex-Im and OPIC possess technical information to which this author did not have access, and the estimates should be viewed as preliminary. Each facility has differing operational characteristics that I cannot discern or include in this emissions survey. Consequently, global factors were used in lieu of operational data.

⁶ As mentioned previously, Ex-Im provided (in its 1999 report) estimates of potential downstream emissions from full combustion of the delivered products from the agency's investments to extract, refine, or transport oil and gas resources, although Ex-Im disavows the need to include those emissions in its inventory. Ex-Im assumed that all of the carbon extracted from oil and gas fields (or processed at refineries or pipelined to markets) would be converted to carbon dioxide—which over-estimates indirect emissions by ~9 percent in the oil sector and ~3 percent for natural gas. This report corrects Ex-Im's over-estimate, although by using proxy data for non-fuel uses of petroleum and gas. Estimates can be improved through the application of project-specific or regional datasets that reflect the disposition of each fuel, if required.

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Conservatisms and Excluded Emissions

10. Several emissions sources from projects supported by Ex-Im and OPIC have been excluded from this estimate. A full accounting would include additional elements of the agencies' investment activities, such as support for cement manufacturing plants and other energy-consuming industrial equipment (e.g., loans and guarantees for the purchase of U.S. commercial jet aircraft), and emissions from the agencies' own buildings and related operations. Nor have emissions from the construction of drilling rigs, pipelines, power plants, and transmission grids been estimated.⁷ Ex-Im and OPIC's financial support for renewable hydro-electricity projects are also excluded, even though hydropower projects (especially in tropical regions) often release methane gas from anaerobic digestion of the organic materials submerged under the dams' reservoirs.

11. A number of conservatisms in the emissions survey should also be noted. In several cases Ex-Im or OPIC power plants are listed as "oil *and* gas" plants, and I have used the lower emissions factors and greater efficiency (higher heat rates) of gas-fired combined-cycle power plants. Coal mining and coal shipping facilities are not included due to lack of data in published Ex-Im and OPIC reports (e.g., Ex-Im's investment in mining equipment for the Russian Karbo and Raspadsky coal mines). A number of projects, particularly in the oil and gas sector, were excluded due to lack of data or conflicting data, all of which

²⁰

⁷ Such emissions are typically considered outside the entity's boundary, although a good case can be made for their inclusion, since the energy and material inputs depend on expanding oil and gas output and generating capacity.

are noted on the attached spreadsheets in order to facilitate more accurate future accounting by the agencies. The factors used to estimate indirect emissions from the provisioning of fuel to power plants are all conservatively estimated. For example, the estimated methane leakage rate of gas pipelines ranges from 0.5 to 5.0 percent according to OPIC, and I used the low end of the range (0.5 percent) of natural gas throughput—in recognition of the fact that agency financial support is for new and presumably technologically sophisticated pipelines with lower-thanaverage leakage rates at seals, flanges, valves, and compressors.

Summary of Results

12. This comprehensive survey of energy projects financed by Ex-Im and OPIC from 1990 through 2003 estimates annual emissions from the power and oil and gas sectors totaling 1,911 million metric tonnes of carbon dioxide equivalent (MtCO₂-eq).⁸ Eighty-seven percent of estimated annual emissions are from Ex-Im-supported projects compared to 13 percent from OPIC. The preponderance of annual emissions is indirect, chiefly because emissions from the dominant oil and gas sector are indirect. Indeed, 61 percent of combined Ex-Im and OPIC emissions are indirect. As previously discussed, I include both direct and indirect emissions from projects assisted by these agencies, and the difference is primarily one of terminology and protocol.

⁸ The estimate also includes fugitive methane emissions from coalmines and natural gas pipelines, for example, and is expressed in units of carbon-equivalent and CO_2 -equivalent. Hence total emissions are also expressed in CO_2 -equivalent units; 97.5 percent of total emissions are carbon dioxide and 2.5 percent is methane (CH₄).

Table 1						
Export-Import Bank & Overseas Private Investment Corporation						
Direct and indirect emissions	Annual emissions (Million tonnes C/yr)	Annual emissions (Million tonnes CO2/yr)	Total project (MtC)	Total project (MtCO2)		
Ex-Im Bank						
Direct emissions	93	341	4,241	$15,\!551$		
Indirect emissions	361	1,325	7,612	27,915		
Total Ex-Im Bank	454	1,666	11,853	43,466		
OPIC						
Direct emissions	26	95	1,218	4,466		
Indirect emissions	41	150	1,002	3,674		
Total OPIC	67	245	2,220	8,140		
Ex-Im Bank & OPIC						
Direct emissions	119	436	5,459	20,018		
Indirect emissions	402	1,475	8,614	31,588		
Total Ex-Im & OPIC	521	1,911	14,073	51,606		

13. Emissions over the operating lives of power plants and full production of identified proven reserves of oil and gas total 51,600 million tonnes of CO₂-equivalent (MtCO₂-eq). This is a better indicator of the aggregate impacts of Ex-Im and OPIC energy-sector investments inasmuch as it measures emissions over project lifetimes.⁹ Table 1 summarizes Ex-Im and OPIC annual and project emissions; complete details are reproduced in Attachment B.

⁹ I have not evaluated the entire energy portfolios of either agency, both of which are allegedly increasing their relative investment in low- and zero-carbon

<u>Ex-Im and OPIC Greenhouse Gas Emissions in the Context of</u> <u>Global Emissions</u>

14. Combined Ex-Im and OPIC emissions of carbon dioxide and methane total 1,911 million tonnes of carbon dioxide-equivalent on an annualized basis. *This equals nearly 8 percent of the world's emissions of carbon dioxide.*¹⁰ This emissions rate is also *equivalent to one-third* of total U.S. carbon emissions in 2003.¹¹ Comparing aggregate emissions of Ex-Im and OPIC over expected operating periods of power plants and oil and gas projects leads to a staggering result: Ex-Im and OPIC projects will, over their operating lives, emit more than twice as much carbon as the entire global economy now does annually, and over 8 times as much as the economy of the United States now does.¹² I have not modeled the anticipated growth of Ex-Im and OPIC power and/or oil & gas portfolios over

energy sources such as hydro-electricity, wind-power, solar, and (arguably) natural gas for heat and power.

 10 Since current and forecasted emissions are typically expressed in units of carbon, not carbon dioxide, we convert from CO₂ to carbon by dividing by its molecular compositions, or 44/12, or 3.667. Thus, 1.911 billion tonnes of CO₂ = 0.521 billion tonnes of carbon (GtC). Year 2002 global carbon emissions totaled 6.443 GtC. Note: my emissions estimates include methane emissions of 2.5 percent of the total; making this adjustment means 0.507 GtC / 6.443 GtC = 7.87 percent of global emissions.

¹¹ U.S carbon emissions totaled 1.601 GtC in 2003: 0.507 / 1.601 GtC = 31.7 percent. Energy Information Administration (2004) *Emissions of Greenhouse Gases in the United States*, www.eia.doe.gov/oiaf/1605/ggrpt/index.html

 12 Ex-Im + OPIC operating life emissions total 14.07 GtC-equiv and 13.58 GtC (after the modest methane emissions are subtracted). Dividing 13.58 GtC by year 2002 global emissions of 6.443 GtC = 2.11 times. Similarly, Ex-Im + OPIC long-term emissions of 13.58 GtC are 8.49 times U.S annual emissions of 1.6 GtC in 2003.

the next few decades. However, OPIC's published statements indicate that it expects their power plant portfolio to expand from 16,775 megawatts (MW) in 2000 to 42,000 MW by 2015, suggesting more than a doubling in 15 years and a growth rate of more than 6 percent per annum.¹³ This is faster than growth in global carbon emissions, indicating the possibility that OPIC's and Ex-Im's emissions will grow from its current gross of 8 percent per year to a significantly more substantial percentage.

15. I firmly disagree with OPIC's conclusion that its energy-sector investments are "not a substantial contributor to global GHG emissions and global climate change."¹⁴ OPIC's and Ex-Im's current emissions, the future emissions of its existing fossil fuel portfolio alone, and anticipated growth in their combined carbon portfolios suggest the agencies will continue to expand their impacts on climate. To paraphrase an old Chinese maxim: 'unless the agencies change direction, they are likely to end up where they are headed.'

¹³ OPIC (2000), pp. 15 and 18 (MW datum and projection to 2015).

¹⁴ OPIC (2000), p. 19.

I declare under the penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Executed on December 2 (, in Snowmass, Colorado.

Richard Heede

.

1

1	Attachment A
2 3 4	References December 2004
5	 American Petroleum Institute (2001) Compendium of Greenhouse Gas Emissions
6	Estimation Methodologies for the Oil and Gas Industry, written for API by Harris,
7	Graham, Theresa Shires, & Chris Loughran, URS Corp., Austin TX, 196 pp
8 9	Cogan, Douglas G. (2003) Corporate Governance and Climate Change: Making the Connection, CERES Sustainable Governance Project, Boston, 129 pp. www.ceres.org
10	Econergy International, Inc. (2004) Proposed Methodologies for Estimating Downstream
11	Greenhouse Gas Emissions from Oil and Gas Facilities in OPIC/ExIm Portfolios,
12	Boulder, 3 pp.
13 14	Energy Information Administration (2004) <i>Emissions of Greenhouse Gases in the United States 2003</i> , U.S. Dept of Energy, Washington, DC. www.eia.doe.gov.
15	Export-Import Bank of the United States (1999) <i>Ex-Im Bank's Role in Greenhouse Gas</i>
16	<i>Emissions and Climate Change</i> , Engineering and Environment Division, August, 59
17	pp.
18 19	Global Reporting Initiative (2002) Sustainable Reporting Guidelines, Amsterdam, www.globalreporting.org
20	 Heede, Richard (2003) ExxonMobil Corporation: Emissions Inventory 1882-2002:
21	Spreadsheets, Climate Mitigation Services, Snowmass, Colorado, USA, December,
22	commissioned by Friends of the Earth Trust Limited, London; 90 pp (13 tabloid
23	worksheets, 72 pages of cell notes, 5 charts).
24	Heede, Richard (2003) ExxonMobil Corporation: Emissions Inventory 1882-2002: Methods &
25	Results, Climate Mitigation Services, Snowmass, Colorado, USA, December,
26	commissioned by Friends of the Earth Trust Limited, London; 30 pp., 4 charts,
27	references.
28	Heede, Richard (1983) A World Geography of Recoverable Carbon Resources in the Context
29	of Possible Climate Change, National Center for Atmospheric Research, Boulder, CO,
30	NCAR-CT-72, 136 pp.
31	Houghton, J. T. et al (2001) <i>Climate Change 2001: The Scientific Basis</i> , Working Group
32	One, 3rd Assessment, Intergovernmental Panel on Climate Change (www.ipcc.ch),
33	Cambridge University Press, 880 pp.
34	Wysham, Daphne, Jon Sohn, & Jim Vallette (1999) OPIC, Ex-Im and Climate Change:
35	Business as Usual? An Analysis of U.S. Government Support for Fossil Fueled
36	Development Abroad, 1992-1998, Institute for Policy Studies, Friends of the Earth,
37	and International Trade Information Service Washington, 113 pp., www.seen.org
38	International Petroleum Industry Environmental Conservation Association (2003)
39	Petroleum Industry Guidelines for Reporting Greenhouse Gas Emissions, prepared by
	Civ. No. C 02 4106 ISW 15

Civ. No. C 02 4106 JSW DECLARATION OF RICHARD HEEDE

1 Battelle for IPIECA, International Association of Oil and Gas Producers, & American 2 Petroleum Institute, London, 81 pp., www.ipieca.org 3 International Petroleum Industry Environmental Conservation Association & American 4 Petroleum Industry (2003) Compendium of Sustainability Reporting Practices and 5 Trends for the Oil and Gas Industry, 44 pp., IPIECA, London, www.ipieca.org 6 Kwitney, Jonathan (1984) Endless Enemies: The Making of an Unfriendly World, St. 7 Martin's Press. 8 Leffler, William (1985) Petroleum Refining for the Non-Technical Person, Pennwell, 172 pp. 9 Loreti, Christopher, William Wescott, & Michael Isenberg (2000) An Overview of 10 Greenhouse Gas Inventory Issues, prepared for the Pew Center on Global Climate 11 Change by Arthur D. Little, Inc., 54 pp., www.pewclimate.org. 12 Marland, Gregg, T. A. Boden, & R. J. Andres (2002) "Global, Regional, and National CO₂ 13 Emissions." In Trends: A Compendium of Data on Global Change, Carbon Dioxide 14 Information Analysis Center, Oak Ridge National Laboratory, U.S. DOE, 15 http://cdiac.esd.ornl.gov/trends/emis/treglob.htm. 16 Mineral Policy Institute & AID/Watch (2003) 100 to 1: EFIC's gamble with climate, 23 pp., 17 Erskineville, New South Wales, www.mpi.org au, www.aidwatch.org.au. 18 Overseas Private Investment Corporation (2000) Climate Change: Assessing Our Actions, 19 Washington, 53 pp. 20 Repetto, Robert, & James Henderson (2003) Environmental Exposures in the U.S. Electric 21 Utility Industry, Yale University School of Forestry and Environmental Studies, 22 www.yale.edu/forestry/ downloads/-repettohendersonweb.pdf 23 Sustainable Energy and Economy Network (2002) Overseas fossil fuel and renewable energy 24 financing by U.S. government agencies (OPIC and ExIm) Since the 1992 Earth 25 Summit, Sustainable Energy and Economy Network, Washington, 12 pp., 26 www.seen.org 27 Thomas, Charles, Tessa Tennant, & Jon Rolls (2000) The GHG Indicator: UNEP Guidelines 28 for Calculating Greenhouse Gas Emissions for Businesses & Non-Commercial 29 Organisations, United Nations Environment Programme, UNEP Economics and 30 Trade Unit, Geneva. 31 Vallette, Jim, & Steve Kretzmann (2004) The Energy Tug of War: The Winners and Losers 32 of World Bank Fossil Fuel Finance, Sustainable Energy and Economy Network, 33 Washington, 34 pp., www.seen.org 34 Vallette, Jim, Daphne Wysham, & Nadia Martinez (2004) Wrong Turn from Rio: The World 35 Bank's Road to Climate Catastrophe, Sustainable Energy and Economy Network, 36 Institute for Policy Studies, Washington, 24 pp., www.seen.org 37 Various (1979) Energy Management Handbook for Petroleum Refineries, Gas Processing, & 38 Petrochemical Plants, Gulf Publishing, from articles in Hydrocarbon Processing.

- Wang, Michael Q., & H.- S. Huang (1999) A Full Fuel-Cycle Analysis of Energy and Emissions Impacts of Transportation Fuels Produced from Natural Gas, Argonne National Laboratory; www.transportation.anl.gov/ Wang, Michael Q. (2001) Well-to-Tank Energy Use and Greenhouse Gas Emissions of
- Transportation Fuels: North American Analysis, Vol. 3, General Motors, Argonne National Laboratory, BP, ExxonMobil, and Shell; www.transportation.anl.gov/.
- World Business Council for Sustainable Development & World Resources Institute (2004) The Greenhouse Gas Protocol: a corporate accounting and reporting standard, revised edition, 114 pp., Washington, DC, and Geneva. www.ghgprotocol.org, www.wri.org & www.wbcsd.org

1

2

3

4

5

6

1 2 3 4 5 6 7	Attachment B Spreadsheets December 2004 Contents:
8	 Seven worksheets on Ex-Im Bank and OPIC fossil-fueled nower plant
9	projects followed by twenty-three (23) pages of worksheet notes;
10 11	• Five worksheets on the agencies' portfolios of oil and gas projects followed by twenty-four (24) pages of worksheet notes;
12 13	• One worksheet summarizing each agency's direct and indirect aggregate emissions, followed by one (1) page of worksheet notes.
14	How to read the worksheets and cell comments: Each worksheet discusses
15	methodologies, assumptions, data sources, uncertainties, and calculations
16	embedded in notes to pertinent cells. In most cases, the formula used to estimate
17	emissions is explicitly described. All such comments appear in the original
18	spreadsheet as active "carrots" that designate the entry of a comment. The PDF
19	version of the spreadsheet attached to this declaration does not contain active
20	carrots; instead, every comment has been printed in the pages following each
21	energy sector's set of worksheets. Every comment has an "address" that
22	corresponds to the column and row of the cell being referenced in each
23	worksheet.

A	В	С	D	E	F	G	Н	I
1	1							
	(GHG emissions from Fx-Im	Bank	and	OPTC	proie	ects	
2			Dank		01 10	p: 0] C		\vdash
3		Coal-, Oil-, and Nat	ural Gas	-fired P	ower Pla	nts		
4		Climate	Mitigation S	Services				
5			Richard Heede					-
7			11-Dec-04					
		Export-Import P	ank of t	ha Unit	od Statos			
8					eu States			
9	_	Plant type	Total capacity	Annual	Annual Carbon Dioxide	Cumulative	Cumulative	_
11		Fiant type	(MW)	(MtC-eq/yr)	(MtCO2-eq/yr)	(MtC-eq)	(MtCO2-eq)	
12		Direct emissions: Ex-Im cool-fired projects 1988-2004		Coal		60 yr life	60 yr life	-
13	1988	Shidenelieu China	1 200	2.67	9.77	160	586	
15	1989	Lamma Island, China	350	0.78	2.85	47	171	
16	1990	Paiton, Indonesia	800	1.78	6.52	107	391	
18	1992	Mae Moh Power, Thailand	600	1.33	4.89	80	293	
19	1993	Suralaya 4 5 6, Indon. (1800); Paqbilao, Philip. (700)	2,500	5.55	20.36	333	1,222	
20	1005	Ligang, Hong Kong Sual, Philippines (1200); Turow, Poland (470): Paiton 1. Indonesia (1260):	/00	1.55	5.70	93	342	⊢
21	1995	Dalian (700) & Dandong (700), China	4,330	9.62	35.27	577	2,116	_
22	1996	Jawa, Indonesia (1220); Naton 2, China (700); Jindal, India (260); Fuzhou, China (700)	2,880	6.40	23.46	384	1,407	L
23	1997	Jorf Lasfar, Morocco (700); Quezon, Philippines (475); Yancheng, China (2100); Butonhura, Jacob (1100)	4,375	9.72	35.63	583	2,138	
24	1998	Bhilai, India	580	1.29	4.72	77	283	
25	1999	Dezhou, China	1,320	2.93	10.75	176	645	\vdash
26	-	New EX-IM Bank projects 1999-2004: Pacifico (Petacalco II), Mexico	648	1.44	5.28	86	317	
		Total direct emissions, Ex-Im coal, 1988-2004	20,283	45.1	165	2,703	9.912	
28		······································	,			_,	-,	
30		Indirect emissions						
31		Coal mining energy input		not estimated	not estimated	not estimated	not estimated	
32	_	Coal transport (carbon emissions)		0.37	1.35	22.17	81.28	
34		Total indirect carbon and methane emissions		2.38	8.71	143	523	
35			_					—
		Total omissions from Ex-Im-financed coal-fired newer						
36		inter emissions from Ex-Im-Imanceu coal-meu power		47.4	174	2,846	10,435	
36 37		nlants		47.4	174	2,846	10,435	
36 37 38		nlants		47.4	174	2,846	10,435	
36 37 38 39 40		nlants		47.4	174	2,846	10,435	
36 37 38 39 40		Export-Import B	ank of t	47.4	174 ed States	2,846	10,435	
36 37 38 39 40 41		Export-Import B	ank of t	47.4 he Unit	ed States	2,846	10,435	
36 37 38 39 40 41 41 42 43		Export-Import B	Sank of t	47.4 he Unit	174 ed States Annual	2,846 Cumulative	10,435 Cumulative	
36 37 38 39 40 41 41 42 43 44		Export-Import E	Bank of t	47.4 he Unit Annual Carbon (MtC-eq/yr)	174 ed States Annual Carbon Dioxide (MtC02-eq/yr)	2,846 Cumulative over plant life (MtC-eq)	10,435 Cumulative over plant life (MtC02-eq)	
36 37 38 39 40 41 42 43 44 45		Export-Import E	Bank of t Total capacity by fuel type (MW)	47.4 he Unit	174 ed States Carbon Dioxide (MtCO2-eq/yr)	2,846 Cumulative over plant life (MtC-eq)	10,435 Cumulative over plant life (MtC02-eq)	
36 37 38 39 40 41 42 43 44 45 46 47	1988	Export-Import E Plant type	Bank of t Total capacity by fuel type (MW)	47.4 he Unit Annual Carbon (MtC-eq/yr) Oil	174 ed States Annual Carbon Dioxide (MtC02-eq/yr)	2,846 Cumulative over plant life (MtC-eq) 30 yr life	10,435 Cumulative over plant life (MtC02-eq) 30 yr life	
36 37 38 39 40 41 42 43 44 45 46 47 48	1988 1989	Export-Import E Plant type Direct emissions: Ex-Im oil-fired projects, 1988-2004 Risha, Jordan	Bank of t Total capacity by fuel type (MW) 70	47.4 he Unit Annual Carbon (MtC-eq/yr) Oil 0.09	174 ed States Annual Carbon Dioxide (MtCO2-eq/yr) 0.32	2,846 Cumulative over plant life (MtC-eq) 30 yr life 3 -	10,435 Cumulative over plant life (MtC02-eq) 30 yr life 10	
36 37 38 39 40 41 42 43 44 45 46 47 48 49	1988 1989 1990	Export-Import E Plant type Direct emissions: Ex-Im oil-fired projects, 1988-2004 Risha, Jordan no projects no projects	Bank of t Total capacity by fuel type (MW) 70	47.4 he Unit Carbon (MtC-eq/yr) Oil 0.09	174 ed States Carbon Dioxide (MtCO2-eq/yr) 0.32	2,846 Cumulative over plant life (MtC-eq) 30 yr life 3 -	10,435 Cumulative over plant life (MtCO2-eq) 30 yr life 10	
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	1988 1989 1990 1991	Export-Import E Plant type Direct emissions: Ex-Im oil-fired projects, 1988-2004 Risha, Jordan no projects no projects no projects no projects Converted (460): Parat Hovar Issuel (460): Arabitita El Scheder (400)	Bank of t Total capacity by fuel type (MW) 70 - - - -	47.4 he Unit Annual Carbon (MtC-eq/yr) Oil 0.09 - - - - -	174 ed States Annual Carbon Dioxide (MtCO2-eq/yr) 0.32 - - - -	2,846 Cumulative over plant life (MtC-eq) 30 yr life 3 - - -	10,435 Cumulative over plant life (MtCO2-eq) 30 yr life - - - -	
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	1988 1989 1990 1991	Direct emissions: Ex-Im oil-fired projects, 1988-2004 Risha, Jordan Direct emissions: Ex-Im oil-fired projects, 1988-2004 Risha, Jordan no projects no projects no projects Subar de Company Contemporation (200); Contemporation (200); Guatemala (50); Muara Kanang, Indonesia (350)	Bank of t Total capacity by fuel type (MW) 70 - - - - 1,540	47.4 he Unit Carbon (MtC-eq/yr) 0.09 - - - 1.93	174 ed States Carbon Dioxide (MtC02-eq/yr) 0.32 - - - 7.08	2,846 Cumulative over plant life (MtC-eq) 30 yr life 3 - - 58	10,435 Cumulative over plant life (MtC02-eq) 30 yr life - - - 212	
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	1988 1989 1990 1991 1992 1993	Direct emissions: Ex-Im oil-fired projects, 1988-2004 Risha, Jordan no projects Limay, Philippines (600); Ramat Hovar, Israel (460); Acajutla, El Salvador (80); Guatemala City, Guatemala (50); Muara Kanang, Indonesia (350) Topolabambo, Mexico	Bank of t Total capacity by fuel type (MW) 70 - - - 1,540 350	47.4 he Unit Carbon (MtC-eq/yr) 0.09 - - - 1.93 0.44	174 ed States Carbon Dioxide (MtCO2-eq/yr) 0.32 - - - 7.08 1.61	2,846 Cumulative over plant life (MtC-eq) 30 yr life 3 - - 58 13	10,435 Cumulative over plant life (MtC02-eq) 30 yr life - - 212 48	
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	1988 1989 1990 1991 1992 1993 1994	Direct emissions: Ex-Im oil-fired projects, 1988-2004	Bank of t Total capacity by fuel type (MW) 70 - - - 1,540 350 -	47.4 he Unit Carbon (MtC-eq/yr) 0il 0.09 - - 1.93 0.44 -	174 ed States Carbon Dioxide (MtCO2-eq/yr) 0.32 - - 7.08 1.61 -	2,846 Cumulative over plant life (MtC-eq) 30 yr life 3 - - 58 13 -	10,435 Cumulative over plant life (MtC02-eq) 30 yr life - - 212 48 -	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1988 1989 1990 1991 1992 1993 1994 1995	Direct emissions: Ex-Im oil-fired projects, 1988-2004 Plant type Direct emissions: Ex-Im oil-fired projects, 1988-2004 Risha, Jordan no projects no projects	Control Contro	47.4 he Unit Carbon (MtC-eq/yr) 0il 0.09 - - 1.93 0.44 - 2.99	174 ed States Carbon Dioxide (MtCO2-eq/yr) 0.32 - - 7.08 1.61 - 10.96	Cumulative over plant life (MtC-eq) 30 yr life 3 - - 58 13 - 90	10,435 Cumulative over plant life (MtC02-eq) 30 yr life - - 212 48 - 329	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1988 1989 1990 1991 1992 1993 1994 1995 1996	Direct emissions Ex-Im oil-fired projects, 1988-2004 Direct emissions: Ex-Im oil-fired projects, 1988-2004 Risha, Jordan no projects no projects no projects no projects in oprojects in oprojects no projects n	Bank of t Total capacity by fuel type (MW) 70 - - 1,540 350 - 2,385 769	47.4 he Unit Carbon (MtC-eq/yr) 0.09 - - 1.93 0.44 - 2.99 0.96	174 ed States Carbon Dioxide (MtCO2-eq/yr) 0.32 - - 7.08 1.61 - 10.96 3.54	Cumulative over plant life (MtC-eq) 30 yr life 3 - - 58 13 - 90 29	10,435 Cumulative over plant life (MtC02-eq) 30 yr life 10 - - 212 48 - 329 106	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1988 1989 1990 1991 1992 1993 1994 1995 1996	Direct emissions Ex-Im oil-fired projects, 1988-2004 Direct emissions: Ex-Im oil-fired projects, 1988-2004 Risha, Jordan no projects no projects no projects Limay, Philippines (600); Ramat Hovar, Israel (460); Acajutla, El Salvador (80); Guatemala City, Guatemala (50); Muara Kanang, Indonesia (350); Hub River, Pakistan (1200): AGC. Mexico (147) Central 9, Panama (210); Saba, Pakistan (125); Pascuales, Equador (100); Santa Rosa, Peru (110); Guayaquil, Equador (78); Ujung Pandang, Indonesia (500): Electroauil. Eauador (86)	Control Contro	47.4 he Unit Carbon (MtC-eq/yr) 0.09 - - 1.93 0.44 - 2.99 0.96	174 ed States Carbon Dioxide (MtCO2-eq/yr) 0.32 - - 7.08 1.61 - 10.96 3.54	2,846 Cumulative over plant life (MtC-eq) 30 yr life 3 - - 58 13 - 90 29	10,435 Cumulative over plant life (MtC02-eq) 30 yr life - - 212 48 - 329 106	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	Direct emissions Ex-Im oil-fired projects, 1988-2004 Direct emissions: Ex-Im oil-fired projects, 1988-2004 Risha, Jordan no projects no projects no projects Limay, Philippines (600); Ramat Hovar, Israel (460); Acajutla, El Salvador (80); Guatemala City, Guatemala (50); Muara Kanang, Indonesia (350) Topolabambo, Mexico no projects Costanera, Argentina (320); JPSC, Jamaica (138); Tambok Lorok, Indonesia (580): Hub River, Pakistan (1200): AGC. Mexico (147) Central 9, Panama (210); Saba, Pakistan (125); Pascuales, Equador (100); Santa Rosa, Peru (110); Guayaquil, Equador (78); Ujung Pandang, Indonesia (60): Electroauil. Equador (86) Siderurgica, Guatemala (385): Haait Eilat, Israel (276)	Control Contro	47.4 he Unit Carbon (MtC-eq/yr) 0.09 - - 1.93 0.44 - 2.99 0.96 0.83	174 ed States Carbon Dioxide (MtCO2-eq/yr) 0.32 - - 7.08 1.61 - 10.96 3.54 3.04	2,846 Cumulative over plant life (MtC-eq) 30 yr life 3 - - 58 13 - 90 29 25	10,435 Cumulative over plant life (MtCO2-eq) 30 yr life - - 212 48 - 329 106 91	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999	Export-Import E Plant type Direct emissions: Ex-Im oil-fired projects, 1988-2004 Risha, Jordan no projects no projects Costanera, Argentina (320); JPSC, Jamaica (138); Tambok Lorok, Indonesia (580): Hub River. Pakistan (1200): AGC. Mexico (147) Central 9, Panama (210); Saba, Pakistan (125); Pascuales, Equador (100); Santa Rosa, Peru (110); Guayaquil, Equador (78); Ujung Pandang, Indonesia (60): Electroquil. Equador (86) Siderurgica, Guatemala (385); Haqit Eilat, Israel (276) no projects no projects	Bank of t Total capacity by fuel type (MW) 70 - - 1,540 350 - 2,385 769 661	47.4 he Unit Carbon (MtC-eq/yr) 0.09 - - 1.93 0.44 - 2.99 0.96 0.83	174 ed States Carbon Dioxide (MtCO2-eq/yr) 0.32 - - 7.08 1.61 - 10.96 3.54 3.04	2,846 Cumulative over plant life (MtC-eq) 30 yr life 3 - - 58 13 - 90 29 25	10,435 Cumulative over plant life (MtCO2-eq) 30 yr life - - 212 48 - 329 106 91	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2001	Export-Import E Plant type Direct emissions: Ex-Im oil-fired projects, 1988-2004 Risha, Jordan no projects no projects Costanera, Argentina (320); JPSC, Jamaica (138); Tambok Lorok, Indonesia (580): Hub River. Pakistan (1200): AGC. Mexico (147) Central 9, Panama (210); Saba, Pakistan (125); Pascuales, Equador (100); Santa Rosa, Peru (110); Guayaquil, Equador (78); Ujung Pandang, Indonesia (60): Electroquil. Equador (86) Siderurgica, Guatemala (385): Haqit Elilat, Israel (276) no projects New Ex-Im Bank projects 1999-2004:	Control capacity by fuel type (MW) 70 - - - 1,540 350 - 2,385 769 661	47.4 he Unit Carbon (MtC-eq/yr) 0.09 - - 1.93 0.44 - 2.99 0.96 0.83	174 ed States Carbon Dioxide (MtCO2-eq/yr) 0.32 - - 7.08 1.61 - 10.96 3.54 3.04	2,846 Cumulative over plant life (MtC-eq) 30 yr life 3 - - 58 13 - 90 29 25	10,435 Cumulative over plant life (MtC02-eq) 30 yr life 100 - - 212 48 - 329 106 91	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2001	Direct emissions Ex-Im oil-fired projects, 1988-2004 Direct emissions: Ex-Im oil-fired projects, 1988-2004 Risha, Jordan no projects no projects Limay, Philippines (600); Ramat Hovar, Israel (460); Acajutla, El Salvador (80); Guatemala City, Guatemala (50); Muara Kanang, Indonesia (350) Topolabambo, Mexico no projects Costanera, Argentina (320); JPSC, Jamaica (138); Tambok Lorok, Indonesia (580): Hub River, Pakistan (1200): AGC. Mexico (147) Central 9, Panama (210); Saba, Pakistan (125); Pascuales, Equador (100); Santa Rosa, Peru (110); Guayaquil, Equador (78); Ujung Pandang, Indonesia (60): Electroauil. Equador (86) Siderurqica, Guatemala (385): Haait Eilat. Israel (276) no projects New Ex-Im Bank projects 1999-2004: Cataquazes (Usina), Brazil Carimex, Dominican Republic (size unknown)	Control capacity by fuel type (MW) 70 - - 1,540 350 - 2,385 769 661 na na	47.4 he Unit Carbon (MtC-eq/yr) 0.09 - - 1.93 0.44 - 2.99 0.96 0.83	174 ed States Carbon Dioxide (MtCO2-eq/yr) 0.32 - - 7.08 1.61 - 10.96 3.54 3.04	2,846 Cumulative over plant life (MtC-eq) 30 yr life 3 - - 58 13 - 90 29 25 counted in insufficient	10,435 Cumulative over plant life (MtCO2-eq) 30 yr life 100 - - 212 48 - 329 106 91	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2001	Direct emissions Ex-Im oil-fired projects, 1988-2004 Direct emissions: Ex-Im oil-fired projects, 1988-2004 Risha, Jordan no projects no projects no projects Limay, Philippines (600); Ramat Hovar, Israel (460); Acajutla, El Salvador (80); Guatemala City, Guatemala (50); Muara Kanang, Indonesia (350) Topolabambo, Mexico no projects (580): Hub River, Pakistan (1200): AGC. Mexico (147) Central 9, Panama (210); Saba, Pakistan (1200): AGC. Mexico (147) Central 9, Panama (210); Saba, Pakistan (1200): AGC. Mexico (147) Central 9, Panama (210); Saba, Pakistan (125); Pascuales, Equador (100); Santa Rosa, Peru (110); Guayaquil, Equador (78); Ujung Pandang, Indonesia (60): Electroauil. Equador (86) Siderurgica, Guatemala (385): Hagit Eilat. Israel (276) no projects New Ex-Im Bank projects 1999-2004: Cataguazes (Usina), Brazil Carimex, Dominican Republic (size unknown) Total Ex-Im oil-fired power plants 1988-2004	Control capacity by fuel type (MW) 70 - - 1,540 350 - 2,385 769 661 na na 5,775	47.4 he Unit Carbon (MtC-eq/yr) 0.09 - - 1.93 0.44 - 2.99 0.96 0.83	174 ed States Carbon Dioxide (MtCO2-eq/yr) 0.32 - - 7.08 1.61 - 10.96 3.54 3.04 - - 26.5	2,846 Cumulative over plant life (MtC-eq) 30 yr life 3 - - 58 13 - - 58 13 - 29 25 29 25 counted in insufficient 217	10,435 Cumulative over plant life (MtCO2-eq) 30 yr life 100 - - 212 48 - 329 106 91 Marlim Sul data 796	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2001	Export-Import E Plant type Direct emissions: Ex-Im oil-fired projects, 1988-2004 Risha, Jordan no projects no projects no projects Limay, Philippines (600); Ramat Hovar, Israel (460); Acajutla, El Salvador (80); Guatemala City, Guatemala (50); Muara Kanang, Indonesia (350) Topolabambo. Mexico no projects Costanera, Argentina (320); JPSC, Jamaica (138); Tambok Lorok, Indonesia (580): Hub River. Pakistan (1200): AGC. Mexico (147) Central 9, Panama (210); Saba, Pakistan (125); Pascuales, Equador (100); Santa Rosa, Peru (110); Guayaquil, Equador (78); Ujung Pandang, Indonesia (60): Electroauil. Equador (86) Siderurgica, Guatemala (385): Hagit Eilat. Israel (276) no projects New Ex-Im Bank projects 1999-2004: Cataquazes (Usina), Brazil Carimex, Dominican Republic (size unknown) Total Ex-Im oil-fired power plants 1988-2004	Control capacity by fuel type (MW) 70 - - 1,540 350 - 2,385 769 661 na na 5,775	47.4 he Unit Carbon (MtC-eq/yr) 0.09 - - 1.93 0.44 - 2.99 0.96 0.83	174 ed States Carbon Dioxide (MtCO2-eq/yr) 0.32 - - 7.08 1.61 - 10.96 3.54 3.04 - - 26.5	2,846 Cumulative over plant life (MtC-eq) 30 yr life 3 58 13 - 90 29 25 counted in insufficient 217 -	10,435 Cumulative over plant life (MtCO2-eq) 30 yr life 100 - - 212 48 - 329 106 91 Marlim Sul data	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2001	Direct emissions from EX-Inite Induced Coal-fired power Plant type Direct emissions: Ex-Im oil-fired projects, 1988-2004 Risha, Jordan no projects no projects Limay, Philippines (600); Ramat Hovar, Israel (460); Acajutla, El Salvador (80); Guatemala City, Guatemala (50); Muara Kanang, Indonesia (350) Guatemala City, Guatemala (50); Muara Kanang, Indonesia (350) Topolabambo. Mexico no projects (Costanera, Argentina (320); JPSC, Jamaica (138); Tambok Lorok, Indonesia (580): Hub River. Pakistan (1200): AGC. Mexico (147) Central 9, Panama (210); Saba, Pakistan (125); Pascuales, Equador (100); Santa Rosa, Peru (110); Guayaquil, Equador (78); Ujung Pandang, Indonesia (60): Electroauil. Equador (86) Siderurgica, Guatemala (385): Hagit Eilat, Israel (276) no projects New Ex-Im Bank projects 1999-2004: Cataguazes (Usina), Brazil Carimex, Dominican Republic (size unknown) Total Ex-Im oil-fired power plants 1988-2004	Control capacity by fuel type (MW) 70 - - 1,540 350 - 2,385 769 661 na na 5,775	47.4 he Unit Carbon (MtC-eq/yr) 0.09 - - 1.93 0.44 - 2.99 0.96 0.83	174 ed States Carbon Dioxide (MtCO2-eq/yr) 0.32 - - 7.08 1.61 - 10.96 3.54 3.04 - - 26.5	2,846 Cumulative over plant life (MtC-eq) 30 yr life 3 58 13 - 90 29 25 counted in insufficient 217	10,435 Cumulative over plant life (MtCO2-eq) 30 yr life 100 - - 212 48 - 329 106 91 Marlim Sul data	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2001	Indirect emissions from EX-International Ced Coar-free power Plants Export-Import B Plant type Direct emissions: Ex-Im oil-fired projects, 1988-2004 Risha, Jordan no projects no projects no projects Limay, Philippines (600); Ramat Hovar, Israel (460); Acajutla, El Salvador (80); Guatemala City, Guatemala (50); Muara Kanang, Indonesia (350) Topolabambo, Mexico no projects Costanera, Argentina (320); JPSC, Jamaica (138); Tambok Lorok, Indonesia (580): Hub River, Pakistan (1200): AGC. Mexico (147) Central 9, Panama (210); Saba, Pakistan (125); Pascuales, Equador (100); Santa Rosa, Peru (110); Guayaquil, Equador (78); Ujung Pandang, Indonesia (60): Electroquil. Equador (86) Siderurgica, Guatemala (385): Hagit Eilat, Israel (276) no projects New Ex-Im Bank projects 1999-2004: Cataquazes (Usina), Brazil Carimex, Dominican Republic (size unknown) Total Ex-Im oil-fired power plants 1988-2004	Control capacity by fuel type (MW) 70 - - 1,540 350 - 2,385 769 661 na na 5,775	47.4 he Unit Carbon (MtC-eq/yr) 0.09 - - 1.93 0.44 - 2.99 0.96 0.83 7.24	174 ed States Carbon Dioxide (MtCO2-eq/yr) 0.32 - - 7.08 1.61 - 10.96 3.54 3.04 - - 26.5	2,846 Cumulative over plant life (MtC-eq) 30 yr life 3 - - 58 13 - - 58 13 - 29 25 counted in insufficient 217 -	10,435 Cumulative over plant life (MtC02-eq) 30 yr life 100 - - 212 48 - 329 106 91 Marlim Sul data 796	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2001	Indext emissions from EX-Initialized Coal-filed power Plants Plant type Direct emissions: Ex-Im oil-fired projects, 1988-2004 Risha, Jordan no projects no projects no projects no projects Limay, Philippines (600); Ramat Hovar, Israel (460); Acajutla, El Salvador (80); Guatemala City, Guatemala (50); Muara Kanang, Indonesia (350) Topolabambo, Mexico no projects Costanera, Argentina (320); JPSC, Jamaica (138); Tambok Lorok, Indonesia (580): Hub River, Pakistan (1200): AGC. Mexico (147) Central 9, Panama (210); Saba, Pakistan (125); Pascuales, Equador (100); Santa Rosa, Peru (110); Guayaquil, Equador (78); Ujung Pandang, Indonesia (60): Electroauil. Equador (86) Siderurgica, Guatemala (385): Hagit Eilat, Israel (276) no projects New Ex-Im Bank projects 1999-2004: Cataquazes (Usina), Brazil Carimex, Dominican Republic (size unknown) Total Ex-Im oil-fired power plants 1988-2004 Indirect emissions C02 emissions from oil refinery operations C02 emissions from oil refinery operations C02 emissions from oil transportation	Bank of t Total capacity by fuel type (MW) 70 - - 1,540 350 - 2,385 769 661 na na 5,775	47.4 he Unit Annual Carbon (MtC-eq/yr) 0.09 - - 1.93 0.44 - 2.99 0.96 0.83 7.24 0.06 0.29 0.11	174 ed States Carbon Dioxide (MtCO2-eq/yr) 0.32 - - 7.08 1.61 - 10.96 3.54 3.04 - - 26.5	2,846 Cumulative over plant life (MtC-eq) 30 yr life 3 - - 58 13 - - 58 13 - - 58 13 - 29 25 counted in insufficient 217 - 1.74 8.69 3.21	10,435 Cumulative over plant life (MtC02-eq) 30 yr life 100 - - 212 48 - 329 106 91 Marlim Sul data 796 6.37 31.86 11.79	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2001	Indext emissions from EX-Initialized Coal-filed power Plants Export-Import E Plant type Direct emissions: Ex-Im oil-fired projects, 1988-2004 Risha, Jordan no projects no projects no projects no projects no projects no projects (Sequemala City, Guatemala (50); Muara Kanang, Indonesia (350) Guatemala City, Guatemala (50); Muara Kanang, Indonesia (350) Topolabambo, Mexico no projects (Sequemala City, Guatemala (50); Muara Kanang, Indonesia (350) Topolabambo, Mexico no projects (Sequemala City, Guatemala (50); Muara Kanang, Indonesia (Sequemala (120); Saba, Pakistan (120): AGC. Mexico (147) Central 9, Panama (210); Saba, Pakistan (125); Pascuales, Equador (100); Santa Rosa, Peru (110); Guayaquil, Equador (78); Ujung Pandang, Indonesia (60): Electroquil. Equador (86) Siderurqica, Guatemala (385): Haait Eilat. Israel (276) no projects New Ex-Im Bank projects 1999-2004: Cataquazes (Usina), Brazil Carimex, Dominican Republic (size unknown) Total Ex-Im oil-fired power plants 1988-2004 Indirect emissions CO2 emissions from oil refinery operations CO2 emissions from oil production facilities CO2 emissions from oil production and delivery (CO2-eq)	Control capacity by fuel type (MW) 70 - - - 1,540 350 - 2,385 769 661 na na 5,775	47.4 he Unit Annual Carbon (MtC-eq/yr) 0.09 - - 1.93 0.44 - 2.99 0.96 0.83 7.24 0.06 0.29 0.11 0.22	174 ed States Carbon Dioxide (MtCO2-eq/yr) 0.32 - - 7.08 1.61 - 10.96 3.54 3.04 - - 26.5 0.21 1.06 0.39 0.82	2,846 Cumulative over plant life (MtC-eq) 30 yr life 3 - - 58 13 - - 58 13 - - 58 13 - 90 29 25 counted in insufficient 217 - 1.74 8.69 3.21 8.90	10,435 Cumulative over plant life (MtC02-eq) 30 yr life 100 - - 212 48 - 329 106 91 Marlim Sul data 796 6.37 31.86 11.79 32.64	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2001	Indext emissions from EX-Initialized Coal-filed power Plant s Plant type Direct emissions: Ex-Im oil-fired projects, 1988-2004 Risha, Jordan no projects no projects no projects no projects limay, Philippines (600); Ramat Hovar, Israel (460); Acajutla, El Salvador (80); Guatemala City, Guatemala (50); Muara Kanang, Indonesia (350) Topolabambo, Mexico no projects Costanera, Argentina (320); JPSC, Jamaica (138); Tambok Lorok, Indonesia (580): Hub River, Pakistan (1200): AGC. Mexico (147) Central 9, Panama (210); Saba, Pakistan (125); Pascuales, Equador (100); Santa Rosa, Peru (110); Guayaquil, Equador (78); Ujing Pandang, Indonesia (60): Electroauil. Equador (86) Siderurgica, Guatemala (385): Hagit Eilat, Israel (276) no projects New Ex-Im Bank projects 1999-2004: Cataquazes (Usina), Brazil Carimex, Dominican Republic (size unknown) Total Ex-Im oil-fired power plants 1988-2004 Indirect emissions CO2 emissions from oil refinery operations CO2 emissions from oil refinery operations Fugitive methane from oil production and delivery (CO2-eq) Total indirect carbon and methane emissions	Bank of t Total capacity by fuel type (MW) 70 - - 1,540 350 - 2,385 769 661 na na 5,775	47.4 he Unit Annual Carbon (MtC-eq/yr) 0.09 - - 1.93 0.44 - 2.99 0.96 0.83 7.24 0.06 0.29 0.11 0.22 0.68	174 ed States Carbon Dioxide (MtCO2-eq/yr) 0.32 - - 7.08 1.61 - 10.96 3.54 3.04 - - 26.5 0.21 1.06 0.39 0.82 2.48	2,846 Cumulative over plant life (MtC-eq) 30 yr life 3 - - 58 13 - - 58 13 - 29 25 counted in insufficient 217 - 1.74 8.69 3.21 8.90 22.5	10,435 Cumulative over plant life (MtC02-eq) 30 yr life 100 - 212 48 - 212 48 - 106 91 Marlim Sul data 796 6.37 31.86 11.79 32.64 82.7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2001	Export-Import E Plant type Direct emissions: Ex-Im oil-fired projects, 1988-2004 Risha, Jordan no projects no projects no projects no projects Limay, Philippines (600); Ramat Hovar, Israel (460); Acajutla, El Salvador (80); Guatemala City, Guatemala (50); Muara Kanang, Indonesia (350) Topolabambo, Mexico no projects Costanera, Argentina (320); JPSC, Jamaica (138); Tambok Lorok, Indonesia (580): Hub River, Pakistan (1200): AGC. Mexico (147) Central 9, Panama (210); Saba, Pakistan (125); Pascuales, Equador (100); Santa Rosa, Peru (110); Guayaquil, Equador (78); Ujung Pandang, Indonesia (60): Electroauil. Equador (86) Siderurgica, Guatemala (385): Hagit Eilat, Israel (276) no projects New Ex-Im Bank projects 1999-2004: Cataquazes (Usina), Brazil Carimex, Dominican Republic (size unknown) Total Ex-Im oil-fired power plants 1988-2004 Indirect emissions CO2 emissions from oil refinery operations CO2 emissions from oil refinery operations CO3 emissions from	Bank of t Total capacity by fuel type (MW) 70 - - 1,540 350 - 2,385 769 661 na na 5,775	47.4 he Unit Carbon (MtC-eq/yr) 0.09 - - 1.93 0.44 - 2.99 0.96 0.83 7.24 0.06 0.29 0.11 0.22 0.68	174 ed States Carbon Dioxide (MtCO2-eq/yr) 0.32 - - 7.08 1.61 - 10.96 3.54 3.04 - - 26.5 0.21 1.06 0.39 0.82 2.48	2,846 Cumulative over plant life (MtC-eq) 30 yr life 3 - - 58 13 - - 58 13 - 29 25 counted in insufficient 217 - 1.74 8.69 3.21 8.90 22.5	10,435 Cumulative over plant life (MtC02-eq) 30 yr life 100 - - 212 48 - 329 106 91 Marlim Sul data 796 6.37 31.86 11.79 32.64 82.7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2001	Indext emissions from EX-Initialized Coal-fired power plants Export-Import E Plant type Direct emissions: Ex-Im oil-fired projects, 1988-2004 Risha, Jordan no projects no projects no projects Limay, Philippines (600); Ramat Hovar, Israel (460); Acajutla, El Salvador (80); Guatemala City, Guatemala (50); Muara Kanang, Indonesia (350) Topolabambo, Mexico no projects Costanera, Argentina (320); JPSC, Jamaica (138); Tambok Lorok, Indonesia (580): Hub River, Pakistan (1200): AGC. Mexico (147) Central 9, Panama (210); Saba, Pakistan (125); Pascuales, Equador (100); Santa Rosa, Peru (110); Guayaquil, Equador (78); Ujung Pandang, Indonesia (60): Electroauil. Equador (86) Siderurgica, Guatemala (385): Hagit Eilat, Israel (276) no projects New Ex-Im Bank projects 1999-2004: Cataquazes (Usina), Brazil Carimex, Dominican Republic (size unknown) Total Ex-Im oil-fired power plants 1988-2004 Indirect emissions CO2 emissions from oil refinery operations CO2 emissions from oil roduction facilities CO2 emissions from oil roduction and delivery (CO2-eq) Total indirect carbon and methane emissions	Bank of t Total capacity by fuel type (MW) 70 - - 1,540 350 - 2,385 769 661 na na 5,775	47.4 he Unit Carbon (MtC-eq/yr) 0.09 - - 1.93 0.44 - 2.99 0.96 0.83 7.24 0.06 0.29 0.11 0.22 0.68	174 ed States Carbon Dioxide (MtCO2-eq/yr) 0.32 - - 7.08 1.61 - 10.96 3.54 3.04 - - 26.5 0.21 1.06 0.39 0.82 2.48	2,846 Cumulative over plant life (MtC-eq) 30 yr life 3 - - 58 13 - - 58 13 - - 58 13 - - 58 13 - - 58 13 - - 58 13 - - 58 13 - - 58 13 - - 58 13 - - 58 13 - - 58 13 - - 58 13 - - 58 13 - - - 58 13 - - - 58 13 - - - 58 13 - - - 58 13 - - - 58 13 - - - 58 13 - - - 58 29 25 25 25 25 25 25 25 25 25 25 25 25 25	10,435 Cumulative over plant life (MtC02-eq) 30 yr life 100 - - 212 48 - 329 106 91 Marlim Sul data 796 6.37 31.86 11.79 32.64 82.7	

		в	C	D	F	F	G	н
73	1		C	D	L			
73								
	_	I						
			Export-Import B	ank of t	he Unit	ed States		
75							·	
76				Total capacity	Annual	Annual	Cumulative	Cumulative
77			Plant type	by fuel type	Carbon	Carbon Dioxide	over plant life	over plant life
78	_			(MW)	(MtC-eq/yr)	(MtCO2-eq/yr)	(MtC-eq)	(MtCO2-eq)
80			Direct emissions: Ex-Im gas-fired projects, 1990-2004		Gas		40 yr life	40 yr life
81	19	988	no projects		-	-	-	-
82	19	989	no projects		-	-	-	-
83	19	.990	Alon Tabor, Israel (220); Respaldo, Uruquay (230)	450	0.39	1.44	16	58
84	_ 19	991	Padang, Indonesia	60	0.05	0.19	2	8
85	_ 19	.992	Tambak Lorok, Indon. (360); S. Banqkok, Thail. (300)	660	0.58	2.11	23	85
	10	003	Cajon, Argentina (88); Las Flores, Colombia (150); Machado, Venez. (425); Khanom (659) & Plack Doint (2400), Hong Kong, Karong, Indonesia (1200*);	5 054	4 42	16 19	177	648
86			CEL El Salvador (82): Enerii/TSKK Turkey (51)	5,051	1.12	10.15	177	010
	10	004	Colakoglu, Turkey (123); Cajon 2, Agentina (132); Centneuguen, Argentina	1 252	1 10	4 22	47	172
87		.994	(369): Dabhol. India (650): CEL/GE. El Salvador (78)	1,352	1.18	4.33	47	1/3
			CC Turbine Colombia (980): Caion 3 Argentina (131): Las Flores 2, Colombia					
	19	995	(100); Samalayuca, Mex. (690); Buzmein, Turkmenistan (123); Marmara,	3,102	2.71	9.94	108	398
88			Turkey (500); Tambak Lorok 2, Indonesia (500); Eregli, Turkey (78)					
	-	000		1 405		4.70	50	102
89	19	996	Geneiba, Argentina (660); Uch, Pakistan (586); Bir M'Cherga, Tunisia (250)	1,496	1.31	4.79	52	192
	10	997	Nueva Puerto, Argentina (769): Patagonia, Argentina (76): Zorlu, Turkey (26)	871	0.76	2.79	30	112
90	-		HIDD, Behmin (270), Turumon, Argentina (450), D	0,1	0.70	2.75	50	112
91	19	998	пири, banrain (2/0); Tucuman, Argentina (450); Bursa, Turkey (75); TE-TO, Croatia (190): ATAEP, Turkey (42); Bic Eporii, Turkey (20)	1,047	0.91	3.35	37	134
	-	000	Charrua, Chile (88); Zorlu, Turkev (96): Oscar a Mucado, Venezuela (80):	26.1	0.00		10	17
92	19	.999	Charrua & Antilhue. Chile (100)	364	0.32	1.17	13	47
93			New or other Ex-Im Bank projects 1999-2004:		-	-	-	-
94	19	994	Manaus, Brazil	207	0.18	0.66	7	27
95	19	999	Charrua & Antilhue, Chile	88	0.08	0.28	3	11
96	20	000	Ilijan, Philippines	1,250	1.09	4.01	44	160
97	_ 20	000	Rural gas pipeline gas-fired power, Bangladesh	33	0.03	0.11	1	4
98	- 20	000	Adapazari, Turkey	///	0.68	2.49	27	100
99	- 20	000	Bursa (Zorlu), Turkey	96	0.08	0.31	3	12
100	- 20	000	Gebze, Turkey	1,550	1.35	4.97	54	199
101	- 20	000	Izmir, Turkey Baile (El Caus), Maxica	730	0.64	4.97	26	199
102	- 20	000	Dajio (El Sauz), Mexico Samalavuca, Moxico	515	0.04	1.65	18	66
104	20	001	CADEFE Venezuela	650	0.57	2.08	23	83
105	20	001	Kirklareli Turkey	75	0.07	0.24		10
106	20	001	El Encino (Chihuahua 2), Mexico	130	0.11	0.42	5	17
107			Tanir Bavi, India	43	0.04	0.14	2	6
108	20	001	Araucaria (Bolivia/Brazil pipeline power), Brazil	469	0.41	1.50	16	60
109	20	001	Canoas (Bolivia/Brazil pipeline power), Brazil	250	0.22	0.80	9	32
110	20	001	Ibirite (Marlin Sul O&G power plant), Brazil	na		-	-	-
111	20	002	TermoCeara (Bolivia/Brazil pipeline power), Brazil	270	0.24	0.87	9	35
112	_ 20	002	Termozulia, Venezuela	170	0.15	0.54	6	22
113	- 20	002	Altamira 3 & 4, Mexico	1,036	0.91	3.32	36	133
114	- 20	002	Naco Nagales, Mexico	339	0.30	1.09	12	43
115	- 20	002	Ankara (Baymina), Turkey	/03	0.07	2.44	2/	98
117	- 20	003	Ayen Ostim, Turkey Kabao, Turkov	180	0.03	0.11	1	23
118	- 20	003	ridods, Turkey Kemaloacha, Turkey	na	0.10	-	-	-
119	20	003	Atacama Chile	740	0.65	2.37	26	95
120	20	003	Skikda Algeria	825	0.72	2.64	29	106
121	20	003	Alon Tabor and Eshkol, Israel (size unknown)	na		-	-	-
122	20	004	Cairo North, Egypt	750	0.66	2.40	26	96
			Total Ex-Im gas-fired power plants 1988-2004	27.977	24.4	89.6	978	3,586
123	-	l	The second point plants 1900 2004			00.0	575	2,000
124	-	[1			-	
125			Indirect emissions				-	
126	_		CO2 from flared gas at natural gas production facilities		0.29	1.08	11.73	43.03
127			Venting of CO2 from natural gas operations		0.43	1.58	17.21	63.11
128	_		CO2 emissions from natural gas processing and transportation		1.71	6.28	68.45	251.00
129			Fugitive methane from natural gas production and delivery (CO2-eq)		2.84	10.40	113.46	416.07
130			Total indirect carbon and methane emissions		5.27	19.3	211	773
130	-	L						
131								
122			Total emissions from Ex-1m-financed gas-fired power		29.7	109	1.189	4,359
132	_	1	niants					,
1001	1							

Gree	nhc	ouse ga	s emissions Ex-Im Bank OPI	С				Power plar	nts
	Δ	в	C		F	F	G	н	Тт
134		D	C	U	L				H
135									
			Oversees Private	Tovocto	nont Co	rnoration			
136			Overseas Private	: Investi	ient co	poration	•		
137				Total capacity	Annual	Annual	Cumulative	Cumulative	
138	_		Plant type	by fuel type	Carbon	Carbon Dioxide	over plant life	over plant life	<u>-</u>
139	_			(1910)	(MtC-eq/yr)	(MtCO2-eq/yr)	(MtC-eq)	(MtCO2-eq)	
141			Direct emissions: OPIC coal-fired projects, 1990-2004		Coal		60 yr life	60 yr life	
142		1990	no OPIC coal project						1
143		1991	no OPIC coal project						
144		1992	no OPIC coal project	225	0.72	2.65	42	150	-
145		1993	not named, no country: 325 MW Paiton Energy Indonesia: 1 220 MW	1.220	2.71	9.94	163	596	1-
147		1995	Quezon, Philippines: 480 MW	480	1.07	3.91	64	235	
148		1996	Jorf Lasfar, Morocco: 1,356 MW	1,356	3.01	11.04	181	663	
149		1997	Central Genadora, Guatemala: 120 MW	120	0.27	0.98	16	59	-
150		1998	no UPIC coal project	33	0.07	0.27	4	16	-
152			New or additional OPIC projects to 2004:						-
153		1996	Bo Nok, Thailand: 734 MW	734	1.63	5.98	98	359	
154		2000	Maritza East III Bulgaria: 840 MW	840	1.87	6.84	112	411	E
155			Total OPIC coal-fired power plants 1990-2004	5,108	11.3	41.6	681	2,496	
156				4					L
157			Indirect emissions						
158			CO2 from coal mining energy input		not estimated		not	estimated	
159			CO2 from coal transport		0.09	0.34	5.58	20.47	
160			Fugitive methane from coal mines (converted to carbon equivalent)		0.51	1.85	30.31	111.16	-
161			Total indirect carbon and methane emissions		0.60	2.19	36	132	_
162									-
163			Total emissions from OPIC-financed coal-fired power plants		11.9	43.8	717	2,628	
164							 		+
165									+
167							<u> </u>		
			Overseas Private	Investr	nent Co	rnoration			
168			Overseus i nivate	, investi		poración	•		_
169	_		Diaut taura	Total capacity	Annual	Annual	Cumulative	Cumulative	—
170	-		Plant type	(MW)	(MtC-eg/yr)	(MtCO2-eg/vr)	(MtC-eq)	(MtCO2-eq)	i-
<u>172</u>	_			()	((((=
173			Direct emissions: OPIC oil-fired projects, 1990-2004		Oil		30 yr life	30 yr life	
174		1990	no OPIC oil project						1_
175		1991	no OPIC oil project	224	0.20	1.09	0 00	22.27	1-
177	—	1993	Puerto Quetzar, Guaternala: 234 MW Batangas, Philippines: 105 MW	105	0.29	0.48	3.95	14.48	F
178		1994	Grenada Power, Grenada: 18 MW	18	0.02	0.08	0.68	2.48	
179		1995	Tampo Centro, Guatemala: 78 MW	78	0.10	0.36	2.93	10.76	<u> </u>
180	_	1996	Termovalle, Colombia: 199 MW	199	0.25	0.91	7.48	27.44	-
182	—	1996	no name, no country: 36 MW	36	0.19	0.17	1.35	4.96	F
183		1997	EMA Power, Hungary: 35 MW	35	0.04	0.16	1.32	4.83	
184	_	1997	no name, no country: 78 MW	78	0.10	0.36	2.93	10.76	-
185	—	1997	no name, no country: 102 MW	102	0.13	0.47	3.84	14.07	-
187		1998	Subic Power, Philippines: 111 MW	111	0.14	0.51	4.17	15.31	E
188		1999	Tipitapa Power, Nicaragua: 51 MW	51	0.06	0.23	1.92	7.03	
189		2022	New OPIC projects 1999-2004			0.67	0.45	0.57	<u> </u>
190	_	2002	Puerto Cabezas, Nicaragua: 4.5 MW	4.5	0.01	0.02	0.17	0.62	1-
191			Total OPIC oil-fired power plants 1990-2004	1,219	1.53	5.6	45.8	168	<u> </u>
192	_								-
193			Indirect emissions						<u> </u>
194	_		CO2 from flared gas at oil production facilities		0.01	0.04	0.37	1.34	-
195	-		CO2 emissions from oil refinery operations		0.06	0.22	0.68	2.49	H
197			Fugitive methane from oil production and delivery (CO2-eg)		0.05	0.17	1.88	6.89	F
100			Total indirect carbon and methane emissions		0.14	0.52	4.76	17.4	Γ
1981									

200 201 1.67

6.13

50.58

185

Total emissions from OPIC-financed oil-fired power plants

Gree	enho	ouse ga	s emissions Ex-Im Bank OPIC	C				Power plan	າts
	A	В	С	D	E	F	G	н	I
202		5		5	-				-
203									_
			Overseas Private	Investr	nent Co	rporation	ı		
204			••••••••				-		<u> </u>
205			Plant type	Total capacity	Annual	Annual Carbon Dioxido	Cumulative	Cumulative	<u> </u>
200			Plant type	(MW)	(MtC-eq/yr)	(MtCO2-eq/yr)	(MtC-eq)	(MtCO2-eq)	-
208				. ,	-	· · · · ·			-
209			Direct emissions: OPIC gas-fired projects, 1990-2004		Gas		40 yr life	40 yr life	
210		1990	Hopewell, Philippines: 200 MW	200	0.17	0.64	7	26	-
211		1991	no UPIC gas project Inter-American Colombia: 100 MW	100	0.09	0.32	3	13	-
213		1993	Central Termica, Argentina: 325 MW	325	0.28	1.04	11	42	
214		1994	Trakya Elektrik, Turkey: 480 MW	480	0.42	1.54	17	62	
215		1994	Generacion de Vapor, Venezuela: 315 MW	315	0.28	1.01	11	40	İ
216		1994	Dabhol Power, India: 2,184 MW	2,184	1.91	7.00	/6	280	i—
217		1995	Iermobarranquilla, Colombia: 750 MW	180	0.00	2.40	20	23	-
219		1996	Termocandelaria, Colombia: 316 MW	316	0.28	1.01	11	41	-
220		1996	P.T Energi, Indonesia: 135 MW	135	0.12	0.43	5	17	
221		1996	Empresa Guaracachi, Bolivia: 180 MW	180	0.16	0.58	6	23	i
222		1996	Empresa Electrica, Bolivia: 181 MW	181	0.16	0.58	6	23	I—
223		1996	Central Termica, Argentina: 110 MW	110	0.10	0.35	4	14	-
224		1996	Ave renix, Argenund: 108 MW	100	0.13	0.34	5	18	-
226		1997	no name, no country: 35 MW	35	0.03	0.11	1	4	F
227		1998	TRI Energy, Thailand: 700 MW	700	0.61	2.24	24	90	
228		1998	NEPC Consortium, Bangladesh: 120 MW	120	0.10	0.38	4	15	<u> </u>
229		1999	Turboven Maraquay, Venezuela: 64 MW	64 72	0.06	0.21	2	8	-
231		1999	Empresa Produtora Brazil: 480 MW	480	0.00	1.54	17	62	-
232			New OPIC projects 1999-2004:						
233		1999	AES/Enron, Nigeria: 270 MW	270	0.24	0.87	9	35	
234		1999	Gaza, Palestine: 136 MW	136	0.12	0.44	5	17	
235		1999	Takoradi, Ghana: 300 MW	300	0.26	0.96	10	38	
236		2000	AES Andres, Dominican Republic: 300 MW	300	0.26	0.96	10	38	-
238		2000	Gebze Turkey: 1,550 MW	1.550	1.35	4.97	54	199	-
239		2000	Izmir, Turkey: 1,550 MW	1,550	1.35	4.97	54	199	
240		2001	Araucaria, Brazil: 469 MW	469	0.41	1.50	16	60	
241		2001	Rio, Brazil: 279 MW	279	0.24	0.89	10	36	<u> </u>
242			Total OPIC gas-fired power plants 1990-2004	12,867	11.2	41.2	450	1,649	
243									
244			Indirect emissions						
245			CO2 from flared gas at natural gas production facilities		0.13	0.49	5.40	19.79	
246			Venting of CO2 from natural gas operations		0.20	0.73	7.92	29.03	İ
247			CO2 emissions from natural gas processing and transportation		0.79	2.89	31.48	115.44	
248			Fugitive methane from natural gas production and delivery (CO2-eq)		1.30	4.78	52.18	191.35	<u> </u>
249			Total indirect carbon and methane emissions		2.42	8.89	97	356	
250									İ.
251			Total emissions from OPIC-financed gas-fired power plants		13.7	50.1	547	2.005	1
252									┝
253									
254									
255									
						·	-		İ
256			Export-Import Bank & Overs	seas Priv	ate Inv	restment	Corpora	tion	l I
257	-			Total capacity	Annual	Annual	Cumulative	Cumulative	F
258			Direct and indirect emissions	megawatts	Carbon	Carbon Dioxide	over plant life	over plant life	_
259				(MW)	(MtC-eq/yr)	(MtCO2-eq/yr)	(MtC-eq)	(MtCO2-eq)	
261	-								┢
262			Direct Ex-Im Bank emissions, all power plants	54,035	77	281	3,898	14,295	[
263			Indirect Ex-Im Bank emissions, all power plants		8	31	376	1,379	
264									
265							-		<u> </u>
266			Direct OPIC emissions, all power plants	19,194	24	88	1,176	4,314	Ĺ
267			Indirect OPIC emissions, all power plants		3	12	138	505	
268									
269									1

74

Total Ex-Im Bank plus OPIC Emissions

Of which methane (C-eq and CO2-eq)

73,229

112

5.6

412

20.4

5,588

273

20,491

1,001

Cell: D4 Comment: Rick Heede:

This report relies extensively on published and un-published work by both Ex-Im Bank (1999) and OPIC (2000), and also by Wysham, Sohn, & Vallette (1999). We have also used updated (and revised) unpublished spreadsheets by Jim Vallette, a 2000 report by Sustainable Energy and Economy Network (available at www.seen.org), the extensive project database posted at the seen.org website, and memoranda written by uncited Ex-Im and OPIC staff.

These publications have been essential in our efforts to identify financed projects as well as their fuel type, installed equipment, generating capacity, marginal oil and gas reserves related to financed projects, and anticipated peak or annual production rates. Neither Ex-Im nor OPIC publish details on their financed projects in their regular or annual reports. The emissions estimation protocols of both Export Credit Agencies and that of Wysham et al have been reviewed. These protocols have been not been adopted in the present work, however. The most significant differences between the previous and the current emissions accounting protocols are (a) our inclusion of several categories of indirect emissions, (b) our adoption of longer (and realistic) operating lives for power plants financed by Ex-Im or OPIC, and (c) inclusion of emissions flowing from Ex-Im/OPIC-financed oil and gas extraction projects (both ECAs disavow accounting for emissions from oil and gas fuels merely facilitated by their financial support). See the attached Declaration and the comments embedded in this spreadsheet for details.

We have made every effort to be as complete, judicious, and accurate as available data allow.

Richard Heede, Climate Mitigation Services, 1626 Gateway Road, Snowmass, Colorado 81654 USA 1-970-927-9511 heede@climatemitigation.com

-Rick-= 20Dec04

Cell: G9

Comment: Rick Heede:

This report uses far longer power plant operating lives than previous reports to project future or life-cycle carbon emissions. Real-world experience shows power plant durability exceeding fifty years; we use different estimapted operating lives for each type of plant (see below).

ExIm Bank (1999), p. 27: "Assuming that these plants, on average, have an operating life of 25 years." (also assumes 85 percent availability or capacity factor).

OPIC (2000), p. 18: "that each plant will operate for 25 years." (also assumes 85 percent availability or capacity factor).

Vallette et al (1999), p. 111: "For each power plant project financed by OPIC or Ex-Im, it is assumed that it will run for 20 years at full capacity from the time of financing."

This report's methodology differs substantially. First, we apply different availability factors for each type of plant (90 percent for coal, 85 percent for gas, and 80 percent for oil units). Second, each of the previous sources use extremely low -- 20 to 25 years -- estimates of operating lives. Here we use plant-specific estimates as follows: 60 years for coal facilities, 40 years for gas-fired plants, and 30 years for oil units.

Based on data from David Hawkins, Natural Resources Defense Council, personal communication, 9Dec04.

Cell: C13

Comment: Rick Heede:

Source of projects: Ex-Im Bank (1999) Ex-Im Bank's Role in Greenhouse Gas Emissions and Climate Change, revised, Appendix C.

Cell: E13

Comment: Rick Heede:

Estimates of emissions of carbon or carbon dioxide from coal-fired projects are based on an average availability factor (we use 90 percent for base-load coal facilities as opposed to Ex-Im's assumed 85 percent for all power plants, regardless of type), carbon content of fuel (though not adjusted for coal type, which is unknown), and an industry-average heat rate (though this will, in reality, differ from project to project).

Heat rates are assumed to average 10,348 Btu/kWh (10.92 MJ/kWh, 33 percent efficiency), and 94.6 kgCO2/GJ, or 25.8 kgC/GJ.

A "typical" coal-fired power plant thus emits 25.8 kgC/GJ * 10.92 MJ/kWh * 8,760 hrs/yr = 2,468 tonnes carbon per MW-yr = 2,468 tC/MW-yr. For coal-fired power plants we use an availability factor of 90 percent (7,884 hrs/yr): 2,468 tC/MW-yr * 0.90 = 2,221 tC/MW-yr. Availability factor is applied separately in the formula to facilitate adjustment of this factor.

Source: OPIC, 2000, pp. 14 (same factors as used in Ex-Im Bank, 1999).

Cell: C26

Comment: Rick Heede:

Sources: SEEN database at www.seen.org, Jim Vallette's updated Ex-Im Bank and OPIC project spreadsheets, and especially his Master spreadsheet on all ECA energy-related projects (updated to Jul04).

Cell: C27

Comment: Rick Heede:

Vallette Master List: 648 MW coal-fired, Ex-Im financing of \$20; Vallette does estimate CO2 emissions, but the project is included here, and its emissions estimated.

Cell: C30

Comment: Rick Heede:

The aim of this report is to account for both direct and indirect emissions of greenhouse gases that result from the projects financed by Ex-Im Bank and OPIC, regardless of the ECAs level of financial involvement. Direct emissions are typically defined as arising from facilities owned or controlled by the entity in question. Thus emissions from fuels combusted at Ex-Im and OPIC-financed power plants are considered direct emissions by both ECAs, the Wysham et al reports by the Sustainable Energy and Economy Network, and this report. In the power sector we also included indirect emissions from their fuel combustion, e.g., fugitive methane from coal mines and oil and gas operations, emissions related to the transportation of fuels to the power plants, and other emissions related to the fuel provisioning.

In this and the following sections on indirect emissions from coal, oil, and gas-fired p[oewr plant we use U.S. and global data on emissions associated with providing fuels to power plants. These indirect emissions include fugitive methane from coal mines that provide fuel to coal-fired power plants, emissions of carbon dioxide related to CO2 venting at gas production facilities that produce fuel for gas-fired power plants, and emissions associated with refining crude oil into residual and distillate fuels to oil-fired power plants. (Note: other indirect emissions accounted for are detailed in each indirect emissions section by power plant type and agency below.)

Neither Ex-Im nor OPIC estimate indirect emissions for power plants and their fuel cycle in their respective 1999 and 2000 reports.

Cell: C31

Comment: Rick Heede:

This report excludes emissions from energy inputs at coal mines as probably "not material" - that is, probably less than one percent than the carbon in the fuel provided to customers. Underground mines require substantially higher energy input, thus reducing the net energy provided and higher mining emissions from diesel-fueled machinery and purchased (or on-site generation of) electric power. Further research may yield higher emissions rates than assumed as non-material in this report.

Cell: C32

Comment: Rick Heede:

U.S. average energy intensity of freight rail transport is 346 Btu/ton-mile. In 2001, U.S. transported 7.3 million carloads of coal, nearly all to power plants. Average haul distance is ~859 miles (all cargoes). Also, 206 million tons of coal was shipped (coastwise and by rivers and lakes) an average of 400 miles (Table 9.6). Waterborne commerce energy intensity = 444 Btu/ton-mile (Table 9.5).

EIA (2004) AER 2002, p. 199: 1,066 million tons consumed, of which 976 million tons (885 million tonnes) was consumed by electric utilities.

Davis, Stacy (2004) Transportation Energy Data Book, 23, Oak Ridge National Laboratory. www-cta.ornl.gov/data/Index.html

Table 9.9: Summary Statistics for Class I Freight Railroads. See also Tables 2.15 and 2.15.

Thus we estimate energy and carbon emissions per ton of coal shipped to power plants as follows (preliminary):

Water: 206 million tons (187 million tonnes) 400 miles by water at 444 Btu/ton-mile = 36.6 trillion Btu, which (residual fuel at 21.49 million metric tonnes carbon per quadrillion Btu) = 0.79 million metric tonnes carbon emitted (or 0.0042 tonnes carbon emitted per tonne shipped).

Rail (freight class 1): 976 million tons consumed by utilities less 206 million tons shipped by water less, say, 50 million tons consumed by mine-mouth poewr plants (WAG), leaves 700 million tons (635 million tonnes) shipped by rail an average of 859 miles at 359 Btu/ton-mile = 216 trillion Btu, which (diesel fuel at 19.95 million metric tonnes carbon per quadrillion Btu) = 4.31 million metric tonnes carbon emitted (or 0.0068 tonnes carbon emitted per tonne shipped).

Thus, on average: 0.79 + 4.31 = 5.1 million tonnes carbon to transport 885 million tons to electric utilities (including a fraction of zero transport to mine-mouth electric poweer stations). Since coal averages 70+ percent carbon, 5.1 million tonnes / (0.70 * 885 million tonnes) = 0.82 percent. That is: coal transportation adds 8.2 kgC per tonne of carbon burned in the coal-fired power plant, on average.

Cell: C33

Comment: Rick Heede:

Significant quantities of methane are released from coal mines. Stern & Kaufman / CDIAC (the latest data available) estimate total coal-related methane emissions in 1994 at 46.32 million tonnes of CH4. Emission rates vary by coal type and mining operation (surface mines

Ex-Im Bank OPIC

release more methane; many sub-surface mines capture and flare methane for safety reasons).

As a simple approximation of the global average methane emission rate, we calculate kg of methane released per tonne of coal mined. 1994 methane / 1994 world production: 46.32 million tonnes CH4 / 4,559 million tonnes coal = 0.0102 tonnes CH4 per tonne coal extracted, or 10.2 kg CH2 per tonne coal.

Since coal is typically ~70 percent carbon, we calculate the carbon basis as 0.0071 tonnes CH4 per tonne coal extracted, or 7.1 kg CH4 per tonne of carbon combusted from coal.

To convert this estimated fugitive methane emission rate into carbon equivalent, we use IPCC's GWP of CH4 = 23 x CO2, translating to 1 unit of methane = $6.272 \times \text{Carbon-equivalent.*}$

The formula becomes: per tonne of carbon emitted by coal-fired power plants x 0.0071×6.272 .

* To convert fugitive methane emissions to carbon-equivalent emissions: multiply methane emissions by 23 (the methane global warming potential factor [GWP] CH4:CO2) and divide by 3.667 (CO2:carbon), 23/3.667, or a factor of 6.272.

Note: the global warming potential of methane has been revised from 21 x CO2 to 23 x CO2 by the IPPC. Source: Houghton, J. T. et al (2001) Climate Change 2001: The Scientific Basis, Working Group One, Third Assessment, IPPC, Cambridge University Press, p. 388.

See also From David Stern and Robert Kaufmann, Methane Emissions 1860 to 1994, at CDIAC website: http://cdiac.esd.ornl.gov/trends/meth/methane.htm

Cell: G42

Comment: Rick Heede:

This report uses far longer power plant operating lives than previous reports to project future or life-cycle carbon emissions. Real-world experience shows power plant durability exceeding fifty years; we use different estimated operating lives for each type of plant (see below).

ExIm Bank (1999), p. 27: "Assuming that these plants, on average, have an operating life of 25 years." (also assumes 85 percent availability or capacity factor).

OPIC (2000), p. 18: "that each plant will operate for 25 years." (also assumes 85 percent availability or capacity factor).

Vallette et al (1999), p. 111: "For each power plant project financed by OPIC or Ex-Im, it is assumed that it will run for 20 years at full capacity from the time of financing."

This report's methodology differs substantially. First, we apply different availability factors for each type of plant (90 percent for coal, 85 percent for gas, and 80 percent for oil units). Second, each of the previous sources use extremely low -- 20 to 25 years -- estimates of operating lives. Here we use plant-specific estimates as follows: 60 years for coal facilities, 40 years for gas-fired plants, and 30 years for oil units.

Based on data from David Hawkins, Natural Resources Defense Council, personal communication, 9Dec04.

Cell: C46 Comment: Rick Heede: Source of projects: Ex-Im Bank (1999) Ex-Im Bank's Role in Greenhouse Gas Emissions and Climate Change, revised, Appendix C.

Cell: E46

Comment: Rick Heede:

Estimated emissions of carbon dioxide from oil-fired projects are based on an average availability factor (we use 80 percent for oil facilities as opposed to Ex-Im's assumed 85 percent for all power plants regardless of type), carbon content of fuel (which we "blend" for diesel and residual-fired units below), and an industry-average heat rate (though this will, in reality, differ from project to project).

Of 1,214 MW total, 796 MW (65.6%) is diesel (with an emissions factor of 74.05 kgCO2/GJ (= 20.2 kgC/GJ).

The remainder 418 MW (34.4%) is residual fuel (with an emissions factor of 77.35 kgCO2/GJ (= 21.1 kgC/GJ).

Heat rates vary by plant type; most are engine-driven: heat rate of 7588 Btu/kWh (= 8.01 MJ/kWh, 45% efficiency), a couple are simple-cycle at 9757 Btu/kWh (= 10.29 MJ/kWh, 35% efficiency (3412 Btu/kWh out/9757 Btu/kWh in = 0.35)), and one steam boiler at 10,348 Btu/kWh (= 10.92 MJ/kWh, 33% efficiency).

Given the mixture of plant types, fuels, and efficiencies -- and therefore the carbon emissions per hour of operation -- we use a factor of 20.8 kgC/GJ times ~8.6 MJ/kWh (41.9% efficiency).

Our assumed "typical" oil-fired plant thus emits 20.8 kgC/GJ * 8.6 MJ/kWh * 8,760 hrs/yr = 1,567 tonnes carbon per MW-yr = 1,567 tC/MW-yr. For oil-fired power plants we use an availability factor of 80 percent (7,008 hrs/yr): 1,567 tC/MW-yr * 0.80 = 1,254 tC/MW-yr. Availability factor is applied separately in the formula to facilitate adjustment of this factor.

Cell: C59

Comment: Rick Heede:

Sources: SEEN database at www.seen.org, Jim Vallette's updated Ex-Im Bank and OPIC project spreadsheets, and especially his Master spreadsheet on all ECA energy-related projects (updated to Jul04).

Cell: C60

Comment: Rick Heede:

Vallette master list: Cataguazes (Usina), Brazil, 82 MW oil-fired power plant, Ex-Im \$35.7 million in 2001, part of Marlin Sul oil field development, and emissions from power plant are excluded here to eliminate double counting emissions.

Cell: C61

Comment: Rick Heede:

Vallette Master list. Carimex diesel generators, 2002, Ex-Im funding of \$15.7 million; gen size unknown, thus "insufficient data."

Cell: C64

Comment: Rick Heede:

The aim of this report is to account for both direct and indirect emissions of greenhouse gases that result from the projects financed by Ex-Im Bank and OPIC, regardless of the ECAs level of financial involvement. Direct emissions are typically defined as arising from facilities owned or controlled by the entity in question. Thus emissions from fuels combusted at Ex-Im and OPIC-financed power plants are considered direct emissions by both ECAs, the Wysham et al reports by the Sustainable Energy and Economy Network, and this report. In the power sector we also included indirect emissions from their fuel combustion, e.g.,

fugitive methane from coal mines and oil and gas operations, emissions related to the transportation of fuels to the power plants, and other emissions related to the fuel provisioning.

In this and the following sections on indirect emissions from coal, oil, and gas-fired p[oewr plant we use U.S. and global data on emissions associated with providing fuels to power plants. These indirect emissions include fugitive methane from coal mines that provide fuel to coal-fired power plants, emissions of carbon dioxide related to CO2 venting at gas production facilities that produce fuel for gas-fired power plants, and emissions associated with refining crude oil into residual and distillate fuels to oil-fired power plants. (Note: other indirect emissions accounted for are detailed in each indirect emissions section by power plant type and agency below.)

Neither Ex-Im nor OPIC estimate indirect emissions for power plants and their fuel cycle in their respective 1999 and 2000 reports.

Cell: C65

Comment: Rick Heede:

See the "CO2 from flared gas at natural gas production facilities" below for details.

Significant quantities of gas is flared at oil production, processing, storage, and delivery facilities. This in an indirect emission of carbon dioxide attributed to Ex-Im and OPIC-financed oil-fired power plants. We allocate 60 percent of this flaring rate to gas and 40 percent to oil production, processing, storage, and delivery. Gas flaring attributable to oil thus becomes 2 percent x 0.4 = 0.8 percent.

The formula is thus: current and future (over the 40-year operating life) emission from gas consumed at Ex-Im bank/OPIC gas-fired power plants x 0.008.

Cell: C66

Comment: Rick Heede:

We estimate the amount of energy used in oil refineries to process and refine its petroleum products deliverd to Ex-Im Bank and OPIC-financed oil-fired power plants as follows:

Method 1: one preliminary estimate is that five (5) percent of the refinery output is consumed in the refining process, not including purchased gas and electricity (which is sometimes purchased from utilities and at other facilities is generated on site using, for example, distillate-driven gen-sets).

Source: Kevin Lindemer, Irving Oil, New Brunswick, personal communication, 20Jun03.

Method 2: EIA data for fuel consumed at US refineries in 2002 (exclusive of gas and electricity, which is included under those columns):

		,	
LPG	(at 4.30 million Btu per bbl) x	3.44 million bbl =	14.79 x 10^12 Btu;
Distillates	(at 5.83 million Btu per bbl) x	0.84 million bbl =	4.89 x 10^12 Btu;
Residuals	(at 6.29 million Btu per bbl) x	4.81 million bbl =	30.27 x 10^12 Btu;
Petroleum coke	(at 6.02 million Btu per bbl) x	88.24 million bbl =	531.55 x 10^12 Btu;
Coal	(at 20.9 million Btu per ton) x	31 thousand tons =	0.68 x 10^12
Btu;			
Other products	(at 5.80 million Btu per bbl) x	5.21 million bbl =	30.22 x 10^12 Btu;
Purchased steam	(at 970 Btu per lb) x	59.15 million lbs =	57.38 x 10^12 Btu;
Total			669.8 x 10^12
Btu;			

Petroleum equivalent (at 5.8 million Btu per bbl): 669.8×10^{12} Btu/5.8 million Btu per bbl = 115.5 million bbl;

divided by US refinery output of 6,305 million bbl in 2002: 115.5 million bbl/6,305 million bbl = 0.0183, or 1.83 percent.

Source: Energy Information Administration (2003) Petroleum Supply Annual, Volume One, Table 47, p. 115.

Result: Inasmuch as (a) the bulk of refinery energy use in the EIA data is carbon-intensive steam and petroleum coke, (b) the oft-cited figure of 5 percent of refinery throughput in consumed, and (c) less efficient foreign refineries (under less economic and regulatory pressure to improve operational efficiency), we add 4.0 precent of total oil products marketed to oil-fired power plants per year as internal energy used in and carbon emissions from refinery operations.

The formula is thus: carbon emissions from fuel oil and diesel fuel consumed at Ex-Im and OPIC-financed oil-fired power plants x 0.04.

Cell: C67

Comment: Rick Heede:

We use Argonne National Laboratory's GREET model as guidance to making an estimate on other fuel cycle energy inputs to transportation of crude, natural gas, and petroleum products from "wells to wheels."

Crude oil shipping by tankers (VLCCs): GREET assumptions: 5,080 miles average distance, 19 mph average speed, 4,763 Btu per horsepower-hour (typical tanker shaftpower = 124,500 HP); result: 6,089 Btu energy input to move one million Btu of crude oil, or 0.61 percent. Of course, not all oil company crude to refineries arrive by ocean-going tankers, so we dilute this adder by 0.57 (US averages 57 percent imported crude + products), thus the formula is 0.61% x 0.57 = 0.348 percent of total products marketed. Note: we believe the GREET estimates include energy required to back-haul a tanker, but this is uncertain; if not, GREET data suggest that backhauling a VLCC requires 20 Btu per ton-mile (vs 22 Btu/ton-mile for the front-haul). See GREET.xls, worksheet on Transportation and Distribution, section #9.

Pipelines: GREET assumptions: distance pipelined (750 miles for crude, 400 miles for products from refineries to tank farms), 270 Btu per ton-mile; results: 3,815 million Btu of petroleum input to pipeline transport of one million Btu of crude oil (1,998 Btu per million Btu of gasoline pipelined). Note: this excludes other energy inputs, such as gas or electricity used in pipelines, which brings the pipeline energy input to 6,129 Btu per million Btu of crude thus transported.) Dilution: assume that 43 percent of crude is shipped to refineries by pipeline (thus $0.43 \times 3,815 = 1,640$ Btu per million Btu of total crude shipped), plus assume that all products are pipelined from refineries to tank farms (at 1,998 Btu per million Btu of refined products); total 1,640 + 1,998 = 3,638 Btu per million Btu, total energy input to pipeline of crude and products, or 0.364 percent.

Conclusion: oil inputs to transportation of 0.763% (for domestic waterborne shipping) + 0.348% (for crude oil and products transport by ocean-going tankers) + 0.364% (for pipeline of crude and products) = 1.475 percent. Detailed analysis will probably find this result to be conservative.

The formula is thus: carbon emissions from oil consumed in Ex-Im and OPIC-financed oilfired power plants x 0.0148.

Note: Not included in this or any other indirect emissions estimate of OPIC and Ex-Im projects is the considerable energy and emissions embodied in the construction of the power plants and the infrastructure to extract, refince, and deliver fuel; nor is the energy invested in building electric transmission grids included.

Climate Mitigation Services

Sources: Stacy Davis (2001) Transportation Energy Data Book, edition 21, U.S. Dept of Energy, Center for Transportation Analysis, Oak Ridge National Laboratory, Oak Ridge, TN. Tables 12-4, 12-5, and 1-11., and personal communication.

Michael Q. Wang, Argonne National Laboratory, GREET model, www.transportation.anl.gov/greet/index.html, and personal communication 18Jul03.

Cell: C68

Comment: Rick Heede:

Vallette Master: "650 MW gas and oil power plants." Part of Paraguana, presumably an oil and gas development. ExIm funding: \$29.4 million.

Cell: D75

Comment: Rick Heede:

Vallette master, Ex-Im Bank 2001 \$5.1 million financing, 2.0 million tonnes CO2.

Cell: C76

Comment: Rick Heede:

Cell: G76

Comment: Rick Heede:

This report uses far longer power plant operating lives than previous reports to project future or life-cycle carbon emissions. Real-world experience shows power plant durability exceeding fifty years; we use different estimated operating lives for each type of plant (see below).

ExIm Bank (1999), p. 27: "Assuming that these plants, on average, have an operating life of 25 years." (also assumes 85 percent availability or capacity factor).

OPIC (2000), p. 18: "that each plant will operate for 25 years." (also assumes 85 percent availability or capacity factor).

Vallette et al (1999), p. 111: "For each power plant project financed by OPIC or Ex-Im, it is assumed that it will run for 20 years at full capacity from the time of financing."

This report's methodology differs substantially. First, we apply different availability factors for each type of plant (90 percent for coal, 85 percent for gas, and 80 percent for oil units). Second, each of the previous sources use extremely low -- 20 to 25 years -- estimates of operating lives. Here we use plant-specific estimates as follows: 60 years for coal facilities, 40 years for gas-fired plants, and 30 years for oil units.

Based on data from David Hawkins, Natural Resources Defense Council, personal communication, 9Dec04.

Cell: C80

Comment: Rick Heede:

Source of projects: Ex-Im Bank (1999) Ex-Im Bank's Role in Greenhouse Gas Emissions and Climate Change, revised, Appendix C.

Cell: E80

Comment: Rick Heede:

Estimated emissions of carbon dioxide from gas-fired projects are based on an average availability factor (we use 85 percent for gas facilities (Ex-Im's assumed 85 percent for all power plants regardless of type)), carbon content of fuel, and an industry-average heat rate

(though this will, in reality, differ from project to project).

Heat rates are assumed to average 7,266 Btu/kWh (7.67 MJ/kWh, 47 percent efficiency), and 56.1 kgCO2/GJ, or 15.3 kgC/GJ.

A "typical" gas-fired power plant thus emits 15.3 kgC/GJ * 7.67 MJ/kWh * 8,760 hrs/yr = 1,028 tonnes carbon per MW-yr = 1,028 tC/MW-yr. For gas-fired power plants we use an availability factor of 85 percent (7,446 hrs/yr): 1,028 tC/MW-yr * 0.85 = 874 tC/MW-yr. Availability factor is applied separately in the formula to facilitate adjustment of this factor.

Source: OPIC, 2000, pp. 14 (same factors as used in Ex-Im Bank, 1999).

Cell: C86

Comment: Rick Heede:

Ex-Im Bank (1999), Appendix C, notes uncertainty: "Involves conversion to combined cycle. Combustion/steam breakdown not given. 1600 MW Form GT, 800 MW Form ST." Ex-Im ignored this project in its emissions estimate. Here we assume gas-fired combined cycle (47 percent efficiency) and average the size uncertainty to 1200 MW.

Note: ExIm lists Khanom as Hong Kong; Vallette lists as Thailand (probably correct).

Cell: C87

Comment: Rick Heede:

Dabhol is gas & oil combined cycle plant; we use the gas carbon content and heat rate in the estimate.

Cell: C93

Comment: Rick Heede:

Sources: SEEN database at www.seen.org, Jim Vallette's updated Ex-Im Bank and OPIC project spreadsheets, and especially his Master spreadsheet on all ECA energy-related projects (updated to Jul04).

Cell: C95

Comment: Rick Heede:

Vallette Master List: 188 MW gas-fired power plant. Since Ex-Im listed 100 MW, we here add the 88 MW difference. Delete if Ex-Im datum is shown correct.

Cell: C99

Comment: Rick Heede:

Vallette Master list: Bursa (Zorlu), Turkey, 122 MW gas-fired power plant, Ex-Im \$14 million in 1997. with additional Ex-Im funding of \$25.8 million in 1998, plus \$2.7 million in 2000, plus \$31 million in 2001. Since this plant is already listed in Ex-Im 1997 list, but at 26 MW, we add 96 MW of gas-fired emissions here.

Cell: C110

Comment: Rick Heede:

Vallette Master List: 170 MW gas-fired power project. Uses gas from Marlim Sul oil and gas fields (accounted for in Oil and Gas Extraction projects). Ex-Im funding: \$97.4 million.

Cell: C111

Comment: Rick Heede:

Vallette Master List: Bolivia/Brazil pipeline. Ex-Im funding: \$27.6 million.

Cell: C117

Comment: Rick Heede:

Vallette Master: 180 MW, no fuel type listed. Included here; assumed as CC gas. ExIm

funding: \$52.1 million.

Cell: C118

Comment: Rick Heede:

Vallette Master: Turkey 2003 "Kamalpasha power plant." No size or fuel or plant type listed. Not included here. ExIm funding: \$10 million.

Cell: C125

Comment: Rick Heede:

The aim of this report is to account for both direct and indirect emissions of greenhouse gases that result from the projects financed by Ex-Im Bank and OPIC, regardless of the ECAs level of financial involvement. Direct emissions are typically defined as arising from facilities owned or controlled by the entity in question. Thus emissions from fuels combusted at Ex-Im and OPIC-financed power plants are considered direct emissions by both ECAs, the Wysham et al reports by the Sustainable Energy and Economy Network, and this report. In the power sector we also included indirect emissions from their fuel combustion, e.g., fugitive methane from coal mines and oil and gas operations, emissions related to the transportation of fuels to the power plants, and other emissions related to the fuel provisioning.

In this and the following sections on indirect emissions from coal, oil, and gas-fired p[oewr plant we use U.S. and global data on emissions associated with providing fuels to power plants. These indirect emissions include fugitive methane from coal mines that provide fuel to coal-fired power plants, emissions of carbon dioxide related to CO2 venting at gas production facilities that produce fuel for gas-fired power plants, and emissions associated with refining crude oil into residual and distillate fuels to oil-fired power plants. (Note: other indirect emissions accounted for are detailed in each indirect emissions section by power plant type and agency below.)

Neither Ex-Im nor OPIC estimate indirect emissions for power plants and their fuel cycle in their respective 1999 and 2000 reports.

Cell: C126

Comment: Rick Heede:

While global gas flaring is decreasing, it still represents 2.5 percent of carbon emissions from global natural gas consumption, down from 4.3 percent in 1990. The flaring percentage is likely to decrease further, and we use 2.0 percent of gas consumption to project future flaring emissions. This in an indirect emission of carbon dioxide attributed to Ex-Im and OPIC-financed gas-fired power plants. We allocate 60 percent of this flaring rate to gas and 40 percent to oil production, processing, storage, and delivery. Gas flaring thus becomes 2 percent x 0.6 = 1.2 percent.

The formula is thus: current and future (over the 40-year operating life) emission from gas consumed at Ex-Im bank/OPIC gas-fired power plants x 0.012.

Data from Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. cdiac.esd.ornl.gov/

Cell: C127

Comment: Rick Heede:

Carbon dioxide is vented from both oil and gas production platforms and from gas processing facilities to reduce CO2 content and to meet pipeline gas specifications. Venting rates vary greatly from facility to facility, every gas reservoir contains differing amounts of carbon dioxide and other gases, and the fraction of removed CO2 also varies.

Benchmark 1: the US CO2 venting rate from natural gas operations (4.9 million metric

tonnes carbon of CO2 removal from US natural gas production divided by total US gas consumption of 315 million tonnes carbon, or 1.53 percent, 1999 data).

Source: Energy Information Administration (2001) Emissions of Greenhouse Gases in the United States, 2000, US DOE, Washington, p. 28.

Benchmark 2: reducing CO2 content of sour gas from 3.0 mole percent CO2 to 2.0 mole percent CO2 results in the venting of 147.8 tonnes carbon per billion standard cubic feet processed. This alone is equivalent to a venting rate of 1.0 percent.

Source: American Petroleum Institute (2001) Compendium Of Greenhouse Gas Emissions Estimation Methodologies For The Oil And Gas Industry, p. 4-32.

Benchmark 3: The BuMines data shows "Vented and Wasted Gas" from 1936 to 1970 (ranging from a high of 26.5 percent of marketed gas production in 1944 to a low of 2.23 percent in 1970), but the table's footnotes do not elucidate what is being counted. We suspect the data is predominantly vented (that is, unflared) natural gas and flared natural gas, and probably does not include vented CO2.

Source: Bureau of Mines (year unknown) Minerals Yearbook, Historical tables, M147-161, US Dept Interior.

Benchmark 4: "Non-hydrocarbon gas removed from natural gas" (NHGR, which is predominantly carbon dioxide but also significant quantities of nitrogen, hydrogen sulfides, and helium; no data for each gas) is shown for 1980-2002. In 1980, the NHGR rate was 0.99 percent; in 1990 = 1.56 percent, and 2000 = 2.50 percent.

Source: Energy Information Administration (2003) Natural Gas Annual, 2002, US DOE, Washington, Table 3 plus historical data;

www.eia.doe.gov/oil_gas/natural_gas/data_publications/natural_gas_annual/nga.html.

Conclusion: Consideration of all of these benchmarks leads us to increase the the EIA's venting rate from 1.53 percent by 15 percent. 1.53 percent x 1.15 = 1.76 percent.

The formula is: =('Natural Gas'!columnGcell#)*0.0176

Cell: C128

Comment: Rick Heede:

Large amounts of natural gs is used in internal operations, on gas platforms and gas production facilities to generate power, fuel compressors, produce heat, and operate refineries and pipelines.

In a previous report on internal consumption of natural gas for gas production (raise steam, generate electricity, run compressors, etc), operate natural gas pipelines, and gas used in gas processing facilities, this author estimated that 11.48 percent of natural gas produced was used in internal operations (exclusive of gas used for re-pressuring oil and gas fields). Heede (2003) ExxonMobil Emissions Inventory 1882-2002, Methods & Results, and spreadsheets on Natural Gas, and Company Energy Use.

Since some of this gas is used in oil refineries and not strictly an indirect energy use for production, processing, and delivery of natural gas to the gas-fired power plants supported by Ex-Im Bank and OPIC funding, and in consideration of the size and location of such power plants to gas production and processing regions, we reduce this 11.48 percent factor to 7.0 percent. While this is likely a conservatism in the real world, we cannot verify this without a detailed analysis, which is beyond the scope of the present project.

Cell: C129

Comment: Rick Heede:

Significant quantities of methane are released from gas production, processing, and delivery operations. Stern & Kaufman / CDIAC (the latest data available) estimate total gas-related

Ex-Im Bank OPIC

methane emissions in 1994 at 15.2 million tonnes of CH4 from gas flaring and an additional 18.0 million tonnes of CH4 from oil and gas production, processing, storage, and delivery. We attribute three-quarters of flaring and one-half of oil and gas supply to gas operations. Thus $15.2 \times 0.75 + 18.0 \times 0.5 = 11.4 + 9.0 = 20.4$ million tonnes of fugitive methane. The remainder is attributed to oil operations.

As a simple approximation of the global average methane emission rate, we calculate kg of methane released per tonne of gas produced. 1994 methane / 1994 world gas production: 76.93 trillion cubic feet (= 79.0 quads; at 14.47 million tonnes carbon per Q gas = gas consumption emissions of 1,100 million tonnes of carbon). Thus gas-related methane emissions of 20.4 million tonnes divided by 1,100 million tonnes carbon from gas consumption = 0.0185 tonne (18.5 kg) methane per tonne of carbon from gas combustion, or 0.0185 percent (in CH4 to carbon units).

To convert this estimated fugitive methane emission rate into carbon equivalent, we use IPCC's GWP of CH4 = 23 x CO2, translating to 1 unit of methane = $6.272 \times \text{Carbon-equivalent.*}$

The formula becomes: per tonne of carbon emitted by coal-fired power plants x 0.0185 x 6.272 = tonnes of methane in carbon-equivalent.

* To convert fugitive methane emissions to carbon-equivalent emissions: multiply methane emissions by 23 (the methane global warming potential factor [GWP] CH4:CO2) and divide by 3.667 (CO2:carbon), 23/3.667, or a factor of 6.272.

Note: the global warming potential of methane has been revised from 21 x CO2 to 23 x CO2 by the IPPC. Source: Houghton, J. T. et al (2001) Climate Change 2001: The Scientific Basis, Working Group One, Third Assessment, IPPC, Cambridge University Press, p. 388.

See also From David Stern and Robert Kaufmann, Methane Emissions 1860 to 1994, at CDIAC website: http://cdiac.esd.ornl.gov/trends/meth/methane.htm

Cell: G137

Comment: Rick Heede:

This report uses far longer power plant operating lives than previous reports to project future or life-cycle carbon emissions. Real-world experience shows power plant durability exceeding fifty years; we use different estimated operating lives for each type of plant (see below).

ExIm Bank (1999), p. 27: "Assuming that these plants, on average, have an operating life of 25 years." (also assumes 85 percent availability or capacity factor).

OPIC (2000), p. 18: "that each plant will operate for 25 years." (also assumes 85 percent availability or capacity factor).

Vallette et al (1999), p. 111: "For each power plant project financed by OPIC or Ex-Im, it is assumed that it will run for 20 years at full capacity from the time of financing."

This report's methodology differs substantially. First, we apply different availability factors for each type of plant (90 percent for coal, 85 percent for gas, and 80 percent for oil units). Second, each of the previous sources use extremely low -- 20 to 25 years -- estimates of operating lives. Here we use plant-specific estimates as follows: 60 years for coal facilities, 40 years for gas-fired plants, and 30 years for oil units.

Based on data from David Hawkins, Natural Resources Defense Council, personal communication, 9Dec04.

Cell: E141

Comment: Rick Heede:

Estimated emissions of carbon dioxide from coal-fired projects are based on an average availability factor (we use 90 percent for base-load coal facilities as opposed to Ex-Im's assumed 85 percent for all power plants regardless of type), carbon content of fuel (though not adjusted for coal type, which is unknown), and an industry-average heat rate (though this will, in reality, differ from project to project).

Heat rates are assumed to average 10,348 Btu/kWh (10.92 MJ/kWh, 33 percent efficiency), and 94.6 kgCO2/GJ, or 25.8 kgC/GJ.

A "typical" coal-fired power plant thus emits 25.8 kgC/GJ * 10.92 MJ/kWh * 8,760 hrs/yr = 2,468 tonnes carbon per MW-yr = 2,468 tC/MW-yr. For coal-fired power plants we use an availability factor of 90 percent (7,884 hrs/yr): 2,468 tC/MW-yr * 0.90 = 2,221 tC/MW-yr. Availability factor is applied separately in the formula to facilitate adjustment of this factor.

Source: OPIC, 2000, pp. 14 (same factors as used in Ex-Im Bank, 1999).

Cell: C152

Comment: Rick Heede:

Sources: SEEN database at www.seen.org, Jim Vallette's updated Ex-Im Bank and OPIC project spreadsheets, and especially his Master spreadsheet on all ECA energy-related projects (updated to Jul04).

Cell: C153

Comment: Rick Heede:

"Bo Nok 734MW coal-fired power plant". Vallette's master list. Not listed in OPIC, 2000.

Cell: C157

Comment: Rick Heede:

The aim of this report is to account for both direct and indirect emissions of greenhouse gases that result from the projects financed by Ex-Im Bank and OPIC, regardless of the ECAs level of financial involvement. Direct emissions are typically defined as arising from facilities owned or controlled by the entity in question. Thus emissions from fuels combusted at Ex-Im and OPIC-financed power plants are considered direct emissions by both ECAs, the Wysham et al reports by the Sustainable Energy and Economy Network, and this report. In the power sector we also included indirect emissions from their fuel combustion, e.g., fugitive methane from coal mines and oil and gas operations, emissions related to the transportation of fuels to the power plants, and other emissions related to the fuel provisioning.

In this and the following sections on indirect emissions from coal, oil, and gas-fired p[oewr plant we use U.S. and global data on emissions associated with providing fuels to power plants. These indirect emissions include fugitive methane from coal mines that provide fuel to coal-fired power plants, emissions of carbon dioxide related to CO2 venting at gas production facilities that produce fuel for gas-fired power plants, and emissions associated with refining crude oil into residual and distillate fuels to oil-fired power plants. (Note: other indirect emissions accounted for are detailed in each indirect emissions section by power plant type and agency below.)

Neither Ex-Im nor OPIC estimate indirect emissions for power plants and their fuel cycle in their respective 1999 and 2000 reports.

Cell: C158

Comment: Rick Heede:

This report excludes emissions from energy inputs at coal mines as probably "not material" -

- that is, probably less than one percent than the carbon in the fuel provided to customers. Underground mines require substantially higher energy input, thus reducing the net energy provided and higher mining emissions from diesel-fueled machinery and purchased (or onsite generation of) electric power. Further research may yield higher emissions rates than assumed as non-material in this report.

Cell: C159

Comment: Rick Heede:

U.S. average energy intensity of freight rail transport is 346 Btu/ton-mile. In 2001, U.S. transported 7.3 million carloads of coal, nearly all to power plants. Average haul distance is ~859 miles (all cargoes). Also, 206 million tons of coal was shipped (coastwise and by rivers and lakes) an average of 400 miles (Table 9.6). Waterborne commerce energy intensity = 444 Btu/ton-mile (Table 9.5).

EIA (2004) AER 2002, p. 199: 1,066 million tons consumed, of which 976 million tons (885 million tonnes) was consumed by electric utilities.

Davis, Stacy (2004) Transportation Energy Data Book, 23, Oak Ridge National Laboratory. www-cta.ornl.gov/data/Index.html

Table 9.9: Summary Statistics for Class I Freight Railroads. See also Tables 2.15 and 2.15.

Thus we estimate energy and carbon emissions per ton of coal shipped to power plants as follows (preliminary):

Water: 206 million tons (187 million tonnes) 400 miles by water at 444 Btu/ton-mile = 36.6 trillion Btu, which (residual fuel at 21.49 million metric tonnes carbon per quadrillion Btu) = 0.79 million metric tonnes carbon emitted (or 0.0042 tonnes carbon emitted per tonne shipped).

Rail (freight class 1): 976 million tons consumed by utilities less 206 million tons shipped by water less, say, 50 million tons consumed by mine-mouth poewr plants (WAG), leaves 700 million tons (635 million tonnes) shipped by rail an average of 859 miles at 359 Btu/ton-mile = 216 trillion Btu, which (diesel fuel at 19.95 million metric tonnes carbon per quadrillion Btu) = 4.31 million metric tonnes carbon emitted (or 0.0068 tonnes carbon emitted per tonne shipped).

Thus, on average: 0.79 + 4.31 = 5.1 million tonnes carbon to transport 885 million tons to electric utilities (including a fraction of zero transport to mine-mouth electric poweer stations). Since coal averages 70+ percent carbon, 5.1 million tonnes / (0.70 * 885 million tonnes) = 0.82 percent. That is: coal transportation adds 8.2 kgC per tonne of carbon burned in the coal-fired power plant, on average.

Cell: C160

Comment: Rick Heede:

Significant quantities of methane are released from coal mines. Stern & Kaufman / CDIAC (the latest data available) estimate total coal-related methane emissions in 1994 at 46.32 million tonnes of CH4. Emission rates vary by coal type and mining operation (surface mines release more methane; many sub-surface mines capture and flare methane for safety reasons).

As a simple approximation of the global average methane emission rate, we calculate kg of methane released per tonne of coal mined. 1994 methane / 1994 world production: 46.32 million tonnes CH4 / 4,559 million tonnes coal = 0.0102 tonnes CH4 per tonne coal
extracted, or 10.2 kg CH2 per tonne coal.

Since coal is typically ~70 percent carbon, we calculate the carbon basis as 0.0071 tonnes CH4 per tonne coal extracted, or 7.1 kg CH4 per tonne of carbon combusted from coal.

To convert this estimated fugitive methane emission rate into carbon equivalent, we use IPCC's GWP of CH4 = 23 x CO2, translating to 1 unit of methane = $6.272 \times \text{Carbon-equivalent.*}$

The formula becomes: per tonne of carbon emitted by coal-fired power plants x 0.0071×6.272 .

* To convert fugitive methane emissions to carbon-equivalent emissions: multiply methane emissions by 23 (the methane global warming potential factor [GWP] CH4:CO2) and divide by 3.667 (CO2:carbon), 23/3.667, or a factor of 6.272.

Note: the global warming potential of methane has been revised from 21 x CO2 to 23 x CO2 by the IPPC. Source: Houghton, J. T. et al (2001) Climate Change 2001: The Scientific Basis, Working Group One, Third Assessment, IPPC, Cambridge University Press, p. 388.

See also From David Stern and Robert Kaufmann, Methane Emissions 1860 to 1994, at CDIAC website: http://cdiac.esd.ornl.gov/trends/meth/methane.htm

Cell: G169

Comment: Rick Heede:

This report uses far longer power plant operating lives than previous reports to project future or life-cycle carbon emissions. Real-world experience shows power plant durability exceeding fifty years; we use different estimapted operating lives for each type of plant (see below).

ExIm Bank (1999), p. 27: "Assuming that these plants, on average, have an operating life of 25 years." (also assumes 85 percent availability or capacity factor).

OPIC (2000), p. 18: "that each plant will operate for 25 years." (also assumes 85 percent availability or capacity factor).

Vallette et al (1999), p. 111: "For each power plant project financed by OPIC or Ex-Im, it is assumed that it will run for 20 years at full capacity from the time of financing."

This report's methodology differs substantially. First, we apply different availability factors for each type of plant (90 percent for coal, 85 percent for gas, and 80 percent for oil units). Second, each of the previous sources use extremely low -- 20 to 25 years -- estimates of operating lives. Here we use plant-specific estimates as follows: 60 years for coal facilities, 40 years for gas-fired plants, and 30 years for oil units.

Based on data from David Hawkins, Natural Resources Defense Council, personal communication, 9Dec04.

Cell: C173

Comment: Rick Heede:

OPIC oil-fired project summary:	
1992 Puerto Quetzal, Guatemala:	234 MW
1993 Batangas, Philippines:	105 MW
1994 Grenada Power, Grenada:	18 MW
1995 Tampo Centro, Guatemala:	78 MW
1996 Termovalle, Colombia:	199 MW

1996 Nejapa Power, El Salvador:	150 MW
1996 no name, no country:	36 MW
1997 EMA Power, Hungary:	35 MW
1997 no name, no country:	78 MW
1997 no name, no country:	102 MW
1997 EAL/ERI Cogen, Jamaica:	17 MW
1998 Subic Power, Philippines:	111 MW
1999 Tipitapa Power, Nicaragua:	51 MW
Total oil (resid + diesel):	1,214 MW

Source: OPIC, 2000, pp. 52-53 (Appendix 1).

Cell: E173

Comment: Rick Heede:

Estimated emissions of carbon dioxide from oil-fired projects are based on an average availability factor (we use 80 percent for oil facilities as opposed to Ex-Im's assumed 85 percent for all power plants regardless of type), carbon content of fuel (which we "blend" for diesel and residual-fired units below), and an industry-average heat rate (though this will, in reality, differ from project to project).

Of 1,214 MW total, 796 MW (65.6%) is diesel (with an emissions factor of 74.05 kgCO2/GJ (= 20.2 kgC/GJ).

The remainder 418 MW (34.4%) is residual fuel (with an emissions factor of 77.35 kgCO2/GJ (= 21.1 kgC/GJ).

Heat rates vary by plant type; most are engine-driven: heat rate of 7588 Btu/kWh (= 8.01 MJ/kWh, 45% efficiency), a couple are simple-cycle at 9757 Btu/kWh (= 10.29 MJ/kWh, 35% efficiency (3412 Btu/kWh out/9757 Btu/kWh in = 0.35)), and one steam boiler at 10,348 Btu/kWh (= 10.92 MJ/kWh, 33% efficiency).

Given the mixture of plant types, fuels, and efficiencies -- and therefore the carbon emissions per hour of operation -- we use a factor of 20.8 kgC/GJ times ~8.6 MJ/kWh (41.9% efficiency).

Our assumed "typical" oil-fired plant thus emits 20.8 kgC/GJ * 8.6 MJ/kWh * 8,760 hrs/yr = 1,567 tonnes carbon per MW-yr = 1,567 tC/MW-yr. For oil-fired power plants we use an availability factor of 80 percent (7,008 hrs/yr): 1,567 tC/MW-yr * 0.80 = 1,254 tC/MW-yr. Availability factor is applied separately in the formula to facilitate adjustment of this factor.

Source: OPIC, 2000, pp. 52-53 (Appendix 1).

Cell: C186

Comment: Rick Heede:

Vallette Master List. 279 MW gas-fired power project, part of Bolivia/Brazil gas pipeline. Entered as a power project. We do not account for emissions from pipeline projects, but do include electric generation and extraction.

Cell: C189

Comment: Rick Heede:

Sources: SEEN database at www.seen.org, Jim Vallette's updated Ex-Im Bank and OPIC project spreadsheets, and especially his Master spreadsheet on all ECA energy-related projects (updated to Jul04).

Cell: C193

Comment: Rick Heede:

The aim of this report is to account for both direct and indirect emissions of greenhouse

Ex-Im Bank OPIC

gases that result from the projects financed by Ex-Im Bank and OPIC, regardless of the ECAs level of financial involvement. Direct emissions are typically defined as arising from facilities owned or controlled by the entity in question. Thus emissions from fuels combusted at Ex-Im and OPIC-financed power plants are considered direct emissions by both ECAs, the Wysham et al reports by the Sustainable Energy and Economy Network, and this report. In the power sector we also included indirect emissions from their fuel combustion, e.g., fugitive methane from coal mines and oil and gas operations, emissions related to the transportation of fuels to the power plants, and other emissions related to the fuel provisioning.

In this and the following sections on indirect emissions from coal, oil, and gas-fired p[oewr plant we use U.S. and global data on emissions associated with providing fuels to power plants. These indirect emissions include fugitive methane from coal mines that provide fuel to coal-fired power plants, emissions of carbon dioxide related to CO2 venting at gas production facilities that produce fuel for gas-fired power plants, and emissions associated with refining crude oil into residual and distillate fuels to oil-fired power plants. (Note: other indirect emissions accounted for are detailed in each indirect emissions section by power plant type and agency below.)

Neither Ex-Im nor OPIC estimate indirect emissions for power plants and their fuel cycle in their respective 1999 and 2000 reports.

Cell: C194

Comment: Rick Heede:

See the "CO2 from flared gas at natural gas production facilities" below for details.

Significant quantities of gas is flared at oil production, processing, storage, and delivery facilities. This in an indirect emission of carbon dioxide attributed to Ex-Im and OPIC-financed oil-fired power plants. We allocate 60 percent of this flaring rate to gas and 40 percent to oil production, processing, storage, and delivery. Gas flaring attributable to oil thus becomes 2 percent x 0.4 = 0.8 percent.

The formula is thus: current and future (over the 40-year operating life) emission from gas consumed at Ex-Im bank/OPIC gas-fired power plants x 0.008.

Cell: C195

Comment: Rick Heede:

We estimate the amount of energy used in oil refineries to process and refine its petroleum products deliverd to Ex-Im Bank and OPIC-financed oil-fired power plants as follows:

Method 1: one preliminary estimate is that five (5) percent of the refinery output is consumed in the refining process, not including purchased gas and electricity (which is sometimes purchased from utilities and at other facilities is generated on site using, for example, distillate-driven gen-sets).

Source: Kevin Lindemer, Irving Oil, New Brunswick, personal communication, 20Jun03.

Method 2: EIA data for fuel consumed at US refineries in 2002 (exclusive of gas and electricity, which is included under those columns):

		-	
LPG	(at 4.30 million Btu per bbl) x	3.44 million bbl =	14.79 x 10^12 Btu;
Distillates	(at 5.83 million Btu per bbl) x	0.84 million bbl =	4.89 x 10^12 Btu;
Residuals	(at 6.29 million Btu per bbl) x	4.81 million bbl =	30.27 x 10^12 Btu;
Petroleum coke	(at 6.02 million Btu per bbl) x	88.24 million bbl =	531.55 x 10^12 Btu;
Coal	(at 20.9 million Btu per ton) x	31 thousand tons =	0.68 x 10^12
Btu;			
Other products	(at 5.80 million Btu per bbl) x	5.21 million bbl =	30.22 x 10^12 Btu;

Purchased steam (at 970 Btu per lb) x 59 Total Btu;

59.15 million lbs =

57.38 x 10^12 Btu; 669.8 x 10^12

Petroleum equivalent (at 5.8 million Btu per bbl): 669.8×10^{12} Btu/5.8 million Btu per bbl = 115.5 million bbl;

divided by US refinery output of 6,305 million bbl in 2002: 115.5 million bbl/6,305 million bbl = 0.0183, or 1.83 percent.

Source: Energy Information Administration (2003) Petroleum Supply Annual, Volume One, Table 47, p. 115.

Result: Inasmuch as (a) the bulk of refinery energy use in the EIA data is carbon-intensive steam and petroleum coke, (b) the oft-cited figure of 5 percent of refinery throughput in consumed, and (c) less efficient foreign refineries (under less economic and regulatory pressure to improve operational efficiency), we add 4.0 precent of total oil products marketed to oil-fired power plants per year as internal energy used in and carbon emissions from refinery operations.

The formula is thus: carbon emissions from fuel oil and diesel fuel consumed at Ex-Im and OPIC-financed oil-fired power plants x 0.04.

Cell: C196

Comment: Rick Heede:

We use Argonne National Laboratory's GREET model as guidance to making an estimate on other fuel cycle energy inputs to transportation of crude, natural gas, and petroleum products from "wells to wheels."

Crude oil shipping by tankers (VLCCs): GREET assumptions: 5,080 miles average distance, 19 mph average speed, 4,763 Btu per horsepower-hour (typical tanker shaftpower = 124,500 HP); result: 6,089 Btu energy input to move one million Btu of crude oil, or 0.61 percent. Of course, not all oil company crude to refineries arrive by ocean-going tankers, so we dilute this adder by 0.57 (US averages 57 percent imported crude + products), thus the formula is 0.61% x 0.57 = 0.348 percent of total products marketed. Note: we believe the GREET estimates include energy required to back-haul a tanker, but this is uncertain; if not, GREET data suggest that backhauling a VLCC requires 20 Btu per ton-mile (vs 22 Btu/ton-mile for the front-haul). See GREET.xls, worksheet on Transportation and Distribution, section #9.

Pipelines: GREET assumptions: distance pipelined (750 miles for crude, 400 miles for products from refineries to tank farms), 270 Btu per ton-mile; results: 3,815 million Btu of petroleum input to pipeline transport of one million Btu of crude oil (1,998 Btu per million Btu of gasoline pipelined). Note: this excludes other energy inputs, such as gas or electricity used in pipelines, which brings the pipeline energy input to 6,129 Btu per million Btu of crude thus transported.) Dilution: assume that 43 percent of crude is shipped to refineries by pipeline (thus $0.43 \times 3,815 = 1,640$ Btu per million Btu of total crude shipped), plus assume that all products are pipelined from refineries to tank farms (at 1,998 Btu per million Btu of refined products); total 1,640 + 1,998 = 3,638 Btu per million Btu, total energy input to pipeline of crude and products, or 0.364 percent.

Conclusion: oil inputs to transportation of 0.763% (for domestic waterborne shipping) + 0.348% (for crude oil and products transport by ocean-going tankers) + 0.364% (for pipeline of crude and products) = 1.475 percent. Detailed analysis will probably find this result to be conservative.

The formula is thus: carbon emissions from oil consumed in Ex-Im and OPIC-financed oil-

fired power plants x 0.0148.

Note: Not included in this or any other indirect emissions estimate of OPIC and Ex-Im projects is the considerable energy and emissions embodied in the construction of the power plants and the infrastructure to extract, refince, and deliver fuel; nor is the energy invested in building electric transmission grids included.

Sources: Stacy Davis (2001) Transportation Energy Data Book, edition 21, U.S. Dept of Energy, Center for Transportation Analysis, Oak Ridge National Laboratory, Oak Ridge, TN. Tables 12-4, 12-5, and 1-11., and personal communication.

Michael Q. Wang, Argonne National Laboratory, GREET model, www.transportation.anl.gov/greet/index.html, and personal communication 18Jul03.

Cell: C197

Comment: Rick Heede:

Significant quantities of methane are released from oil production, processing, and delivery operations. Stern & Kaufman / CDIAC (the latest data available) estimate total oil- and gas-related methane emissions in 1994 at 15.2 million tonnes of CH4 from gas flaring at oil and gas facilities and an additional 18.0 million tonnes of CH4 from oil and gas production, processing, storage, and delivery. We attribute one-quarter of flaring and one-half of oil and gas supply to gas operations. Thus $15.2 \times 0.25 + 18.0 \times 0.5 = 3.8 + 9.0 = 12.8$ million tonnes of fugitive methane. The remainder is attributed to gas operations.

As a simple approximation of the global average methane emission rate, we calculate kg of methane released per tonne of oil produced. 1994 methane / 1994 world oil production: 60.99 million bbl per day (= 22.26 billion bbl/yr = 129 Q = \sim 2,766 million tonnes. 129 quads, at 20.25 million tonnes carbon per Q of crude oil = oil consumption emissions of 2,612 million tonnes of carbon). Thus, oil-related methane emissions of 12.8 million tonnes CH4 divided by 2,612 million tonnes carbon from oil consumption = 0.0049 tonne (4.9 kg) methane per tonne of carbon from oil consumption.

To convert this estimated fugitive methane emission rate into carbon equivalent, we use IPCC's GWP of CH4 = $23 \times CO2$, translating to 1 unit of methane = $6.272 \times Carbon-equivalent.*$

The formula becomes: per tonne of carbon emitted by oil-fired power plants x 0.0049 x 6.272 = tonnes of methane in carbon-equivalent.

* To convert fugitive methane emissions to carbon-equivalent emissions: multiply methane emissions by 23 (the methane global warming potential factor [GWP] CH4:CO2) and divide by 3.667 (CO2:carbon), 23/3.667, or a factor of 6.272.

Note: the global warming potential of methane has been revised from 21 x CO2 to 23 x CO2 by the IPPC. Source: Houghton, J. T. et al (2001) Climate Change 2001: The Scientific Basis, Working Group One, Third Assessment, IPPC, Cambridge University Press, p. 388.

See also David Stern and Robert Kaufmann, Methane Emissions 1860 to 1994, at CDIAC website: http://cdiac.esd.ornl.gov/trends/meth/methane.htm

Cell: G205

Comment: Rick Heede:

This report uses far longer power plant operating lives than previous reports to project future or life-cycle carbon emissions. Real-world experience shows power plant durability exceeding fifty years; we use different estimapted operating lives for each type of plant (see below).

ExIm Bank (1999), p. 27: "Assuming that these plants, on average, have an operating life of 25 years." (also assumes 85 percent availability or capacity factor).

OPIC (2000), p. 18: "that each plant will operate for 25 years." (also assumes 85 percent availability or capacity factor).

Vallette et al (1999), p. 111: "For each power plant project financed by OPIC or Ex-Im, it is assumed that it will run for 20 years at full capacity from the time of financing."

This report's methodology differs substantially. First, we apply different availability factors for each type of plant (90 percent for coal, 85 percent for gas, and 80 percent for oil units). Second, each of the previous sources use extremely low -- 20 to 25 years -- estimates of operating lives. Here we use plant-specific estimates as follows: 60 years for coal facilities, 40 years for gas-fired plants, and 30 years for oil units.

Based on data from David Hawkins, Natural Resources Defense Council, personal communication, 9Dec04.

Cell: C209

Comment: Rick Heede:

OPIC	gas-fired projects summary:	
1990	Hopewell, Philippines:	200 MW
1992	Inter-American, Colombia:	100 MW
1993	Central Termica, Argentina:	325 MW
1994	Trakya Elektrik, Turkey:	480 MW
1994	Generacion de Vapor, Venezuela	: 315 MW
1994	Dabhol Power, India:	2,184 MW
1995	Termobarranquilla, Colombia:	750 MW
1995	Doga Energi, Turkey	180 MW
1996	Termocandelaria, Colombia:	316 MW
1996	P.T Energi, Indonesia:	135 MW
1996	Empresa Guaracachi, Bolivia:	180 MW
1996	Empresa Electrica, Bolivia:	181 MW
1996	Central Termica, Argentina:	110 MW
1996	Ave Fenix, Argentina:	168 MW
1996	Aguaytia Energy, Peru:	141 MW
1997	no name, no country:	35 MW
1998	TRI Energy, Thailand:	700 MW
1998	NEPC Consortium, Bangladesh:	120 MW
1999	Turboven Maraquay, Venezuela:	64 MW
1999	Turboven Cagua, Venezuela:	72 MW
1999	Empresa Produtora, Brazil:	480 MW
Total	gas-fired, OPIC 1990-1999: 7,	,236 MW

Source: OPIC, 2000, pp. 52-53 (Appendix 1).

Cell: E209

Comment: Rick Heede:

Estimated emissions of carbon dioxide from gas-fired projects are based on an average availability factor (we use 85 percent for gas facilities (Ex-Im's assumed 85 percent for all power plants regardless of type)), carbon content of fuel, and an industry-average heat rate (though this will, in reality, differ from project to project).

Heat rates are assumed to average 7,266 Btu/kWh (7.67 MJ/kWh, 47 percent efficiency), and 56.1 kgCO2/GJ, or 15.3 kgC/GJ.

A "typical" gas-fired power plant thus emits 15.3 kgC/GJ * 7.67 MJ/kWh * 8,760 hrs/yr = 1,028 tonnes carbon per MW-yr = 1,028 tC/MW-yr. For gas-fired power plants we use an availability factor of 85 percent (7,446 hrs/yr): 1,028 tC/MW-yr * 0.85 = 874 tC/MW-yr. Availability factor is applied separately in the formula to facilitate adjustment of this factor.

Source: OPIC, 2000, pp. 14 (same factors as used in Ex-Im Bank, 1999).

Cell: C234

Comment: Rick Heede:

Vallette Master spreadsheet: diesel/gas-fired power plant. Not in Vallette's other spreadsheet, nor in OPIC.

Cell: C235

Comment: Rick Heede:

Vallette Master spreadsheet: oil/gas-fired power plant. Not in Vallette's other spreadsheet, nor in OPIC.

Takoradi II 330MW oil-fired power plant expansion, funded by World Bank, 2004 (not included).

Cell: C244

Comment: Rick Heede:

The aim of this report is to account for both direct and indirect emissions of greenhouse gases that result from the projects financed by Ex-Im Bank and OPIC, regardless of the ECAs level of financial involvement. Direct emissions are typically defined as arising from facilities owned or controlled by the entity in question. Thus emissions from fuels combusted at Ex-Im and OPIC-financed power plants are considered direct emissions by both ECAs, the Wysham et al reports by the Sustainable Energy and Economy Network, and this report. In the power sector we also included indirect emissions from their fuel combustion, e.g., fugitive methane from coal mines and oil and gas operations, emissions related to the transportation of fuels to the power plants, and other emissions related to the fuel provisioning.

In this and the following sections on indirect emissions from coal, oil, and gas-fired p[oewr plant we use U.S. and global data on emissions associated with providing fuels to power plants. These indirect emissions include fugitive methane from coal mines that provide fuel to coal-fired power plants, emissions of carbon dioxide related to CO2 venting at gas production facilities that produce fuel for gas-fired power plants, and emissions associated with refining crude oil into residual and distillate fuels to oil-fired power plants. (Note: other indirect emissions accounted for are detailed in each indirect emissions section by power plant type and agency below.)

Neither Ex-Im nor OPIC estimate indirect emissions for power plants and their fuel cycle in their respective 1999 and 2000 reports.

Cell: C245

Comment: Rick Heede:

While global gas flaring is decreasing, it still represents 2.5 percent of carbon emissions from global natural gas consumption, down from 4.3 percent in 1990. The flaring percentage is likely to decrease further, and we use 2.0 percent of gas consumption to project future flaring emissions. This in an indirect emission of carbon dioxide attributed to Ex-Im and OPIC-financed gas-fired power plants. We allocate 60 percent of this flaring rate to gas and 40 percent to oil production, processing, storage, and delivery. Gas flaring thus becomes 2 percent x 0.6 = 1.2 percent.

The formula is thus: current and future (over the 40-year operating life) emission from gas

consumed at Ex-Im bank/OPIC gas-fired power plants x 0.012.

Data from Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. cdiac.esd.ornl.gov/

Cell: C246

Comment: Rick Heede:

Carbon dioxide is vented from both oil and gas production platforms and from gas processing facilities to reduce CO2 content and to meet pipeline gas specifications. Venting rates vary greatly from facility to facility, every gas reservoir contains differing amounts of carbon dioxide and other gases, and the fraction of removed CO2 also varies.

Benchmark 1: the US CO2 venting rate from natural gas operations (4.9 million metric tonnes carbon of CO2 removal from US natural gas production divided by total US gas consumption of 315 million tonnes carbon, or 1.53 percent, 1999 data).

Source: Energy Information Administration (2001) Emissions of Greenhouse Gases in the United States, 2000, US DOE, Washington, p. 28.

Benchmark 2: reducing CO2 content of sour gas from 3.0 mole percent CO2 to 2.0 mole percent CO2 results in the venting of 147.8 tonnes carbon per billion standard cubic feet processed. This alone is equivalent to a venting rate of 1.0 percent.

Source: American Petroleum Institute (2001) Compendium Of Greenhouse Gas Emissions Estimation Methodologies For The Oil And Gas Industry, p. 4-32.

Benchmark 3: The BuMines data shows "Vented and Wasted Gas" from 1936 to 1970 (ranging from a high of 26.5 percent of marketed gas production in 1944 to a low of 2.23 percent in 1970), but the table's footnotes do not elucidate what is being counted. We suspect the data is predominantly vented (that is, unflared) natural gas and flared natural gas, and probably does not include vented CO2.

Source: Bureau of Mines (year unknown) Minerals Yearbook, Historical tables, M147-161, US Dept Interior.

Benchmark 4: "Non-hydrocarbon gas removed from natural gas" (NHGR, which is predominantly carbon dioxide but also significant quantities of nitrogen, hydrogen sulfides, and helium; no data for each gas) is shown for 1980-2002. In 1980, the NHGR rate was 0.99 percent; in 1990 = 1.56 percent, and 2000 = 2.50 percent.

Source: Energy Information Administration (2003) Natural Gas Annual, 2002, US DOE, Washington, Table 3 plus historical data;

www.eia.doe.gov/oil_gas/natural_gas/data_publications/natural_gas_annual/nga.html.

Conclusion: Consideration of all of these benchmarks leads us to increase the the EIA's venting rate from 1.53 percent by 15 percent. 1.53 percent x 1.15 = 1.76 percent.

The formula is: =('Natural Gas'!columnGcell#)*0.0176

Cell: C247

Comment: Rick Heede:

Large amounts of natural gas is used in internal operations, on gas platforms and gas production facilities to generate power, fuel compressors, produce heat, and operate refineries and pipelines.

In a previous report on internal consumption of natural gas for gas production (raise steam, generate electricity, run compressors, etc), operate natural gas pipelines, and gas used in gas processing facilities, this author estimated that 11.48 percent of natural gas produced was used in internal operations (exclusive of gas used for re-pressuring oil and gas fields). Heede (2003) ExxonMobil Emissions Inventory 1882-2002, Methods & Results, and

Climate Mitigation Services

spreadsheets on Natural Gas, and Company Energy Use.

Since some of this gas is used in oil refineries and not strictly an indirect energy use for production, processing, and delivery of natural gas to the gas-fired power plants supported by Ex-Im Bank and OPIC funding, and in consideration of the size and location of such power plants to gas production and processing regions, we reduce this 11.48 percent factor to 7.0 percent. While this is likely a conservatism in the real world, we cannot verify this without a detailed analysis, which is beyond the scope of the present project.

Cell: C248

Comment: Rick Heede:

Significant quantities of methane are released from oil production, processing, and delivery operations. Stern & Kaufman / CDIAC (the latest data available) estimate total oil- and gas-related methane emissions in 1994 at 15.2 million tonnes of CH4 from gas flaring at oil and gas facilities and an additional 18.0 million tonnes of CH4 from oil and gas production, processing, storage, and delivery. We attribute one-quarter of flaring and one-half of oil and gas supply to gas operations. Thus $15.2 \times 0.25 + 18.0 \times 0.5 = 3.8 + 9.0 = 12.8$ million tonnes of fugitive methane. The remainder is attributed to gas operations.

As a simple approximation of the global average methane emission rate, we calculate kg of methane released per tonne of oil produced. 1994 methane / 1994 world oil production: 60.99 million bbl per day (= 22.26 billion bbl/yr = 129 Q = \sim 2,766 million tonnes. 129 quads, at 20.25 million tonnes carbon per Q of crude oil = oil consumption emissions of 2,612 million tonnes of carbon). Thus, oil-related methane emissions of 12.8 million tonnes CH4 divided by 2,612 million tonnes carbon from oil consumption = 0.0049 tonne (4.9 kg) methane per tonne of carbon from oil consumption.

To convert this estimated fugitive methane emission rate into carbon equivalent, we use IPCC's GWP of CH4 = $23 \times CO2$, translating to 1 unit of methane = $6.272 \times Carbon-equivalent.*$

The formula becomes: per tonne of carbon emitted by oil-fired power plants x 0.0049 x 6.272 = tonnes of methane in carbon-equivalent.

* To convert fugitive methane emissions to carbon-equivalent emissions: multiply methane emissions by 23 (the methane global warming potential factor [GWP] CH4:CO2) and divide by 3.667 (CO2:carbon), 23/3.667, or a factor of 6.272.

Note: the global warming potential of methane has been revised from 21 x CO2 to 23 x CO2 by the IPPC. Source: Houghton, J. T. et al (2001) Climate Change 2001: The Scientific Basis, Working Group One, Third Assessment, IPPC, Cambridge University Press, p. 388.

See also David Stern and Robert Kaufmann, Methane Emissions 1860 to 1994, at CDIAC website: http://cdiac.esd.ornl.gov/trends/meth/methane.htm

	А	В	С	D	E	F	G	Н	I	J	К	L
		-	CUC amissians from		. Davi	d		' mwaia				\square
2		Ľ	BAG emissions from	I EX-TL	п вапі	k and	OPIC	ргоје	CTS			
3			Oil and Gas Extract	ion, Refin	eries, and	Pipeline	es					
4			Climat	e Mitigation S	ervices	_						
5				Richard Heede								+
7				14 Dec 04								
			011		Expor	t-Impor	t Bank of	f the Unit	ed States			
8	_		OII						This re	nort		
9	_			EX -	-im or vai	lette dat	.d		Inis re			
10	-		Note on direct vs indirect emissions	Peak production Million bbl/yr	(MshtCO2/yr)	Million bbl	(MshtCO2)	(MtC-eq/yr)	(MtCO2-eq/yr)	(MtC-eq)	(MtCO2-eq)	
12	_											
13			Indirect emissions: Ex-Im oil projects									
14	_	1994	1. Samatlor, Russia (oil field rehab)	35	17	201	97	4	14	21	79	#
16	_	1994	2. Lake Maracaldo, Venezuela (Inco Gas) 3. Tatneft, Russia (oil field rehab)	58	45 1	1,168	898	0	23	125	458	#
17			4. Samburg, Russia ("project is unknown")				4.959	42	157	insufficient	data	
18	-	1998	5. Cantarell oli field, Mexico 6. Cusiana, Venezuela	400	218	2,500	1,360 826	43	24	164	600	#
20	_	1994	7. Permneft, Russia ("canceled")	107	64	1 000	E20	14	50	project	cancelled	
21		1995	9. Kond, Russia ("canceled")	127	04	1,000	529	14	50	project	cancelled	#
23	_	1995	10. Caan oil field, Mexico	58	33	348	204	6	23	37	136	#
25			12. Polar Lights, Russia (no ExIm support)	20	12	204	90	5	10	insufficient	data	
26	_		13. West Linapacan, Philippines	7	3	20	10	1	3	2	8 12	
28			22. Kokdumalak, Uzbekistan (oil)	29	24	383	435	3	11	41	150	
29	_		22. Kokdumalak, Uzbekistan (condensate) 24. Tano Gas Field, Ghana	22	see "nas"	547	see "das"	2	9	49	180	
31	_		Ex-Im Bank refinery projects	. v	See gas	2	See gus	Ŭ	Ŭ	Ŭ	-	
32			15. Cardon Refinery upgrade, Venezuela	127	61	na	1,220	not included:	refined products	supply power	plants	
34	_		17. Perm refinery upgrade, Russia	94	45		903	10	37	305	1,118	
35	_		Humpuss refinery, Indonesia	3	2		32	0	1	11	39 570	
37		2003	20. Panipat refinery, India ("unknown prjct")	40	25		400	5	15	insufficient	data	
38	_	1995	23. Tomsneft Gas Compression, Russia	0.3	3		67 (MtCO2)	0	0	23	83	
40	_	1995	Novoyaroslavl Oil Refinery	102	43	2,044	868	11	40	218	801	
41		1002	Baku-Ceyhan-Tblisi oil pipeline, Georgia	365		7,300	3,100	39	143	780	2,861	-
42		1995	Marlim Sul oil & gas field, Brazil	60		1,200	510	6	24	128	470	
44	_	2004	Doba oil field, Chad, & oil pipeline, Cameroon	82		1,643	446	9	32	176 insufficient	644 data	
46		2000	Delta del Grijalva oil field, Mexico	13	5	250	106	1	5	27	98	
47	-	2003 1999	Pidiregas oil and gas, Mexico Madero oil refinery expansion Mexico	51	22	1.012	440	5	20	insufficient 108	data 397	\mathbb{H}
49		1994	Salamanca oil refinery expansion, Mexico	4	22	73	31	0	1	8	29	
<u>50</u> 51	-	1991	ExxonMobil oil projects, Nigeria Amakpe-Eket crude oil refinery	18		274	116	2	7	29 insufficient	107 data	
52		2001	Hamaca heavy oil development, Venezuela	105	45	2,100	892	11	41	224	823	
53			Total indirect emissions, Ex-Im oil	2,354	749	30,942	19,110	238	873	4,085	14,979	
	-		Direct emissions									
55	-		Flared gas at oil production facilities				Neither Ex-Im	0.19	0.70	3.27	11.98	\square
57			Emissions from oil refinery operations				nor Vallette	4.76	17.46	81.69	299.57	
<u>58</u> <u>5</u> 9			CO2 emissions from oil transportation Fugitive methane from oil ops (CO2-eq)				estimate direct emissions	2.38	10.95	40.85	149.79	\square
60			Total direct emissions (C and CO2-equiv)					10.3	38	177	649	
61			Total emissions. Ex Im oil projects	2 254	740	20.042	10 110	240	011	4 262	15 629	+
62			rotar emissions, EX-1M-OII projects	2,354	/49	30,942	19,110	248	911	4,202	13,028	┩

	А	В	С	D	E	F	G	Н	I	J	К	L
64												
65												
66												_
					Evpor	t-Import	Bank of	f the Unite	ad States			
67					схрог	t-mpon			eu States			
6				Ex-	Tm or Val	lette dat	a		This re	nort		
08	-											-
69	_		Natural Gas	Peak production	Peak production	Total project	Total project	Peak production	Peak production	Total project	Total project	
-/0	_			Billion ct/yr	(MtCO2/yr)	Billion Cr	(MtCO2)	(MtC-eq/yr)	(MtCO2-eq/yr)	(MtC-eq)	(MtCO2-eq)	<u> </u>
70			Indirect emissions: Ex-Im gas projects									
72			2 Laka Maracaiba Manaruala (Inco Cas)	285	see "oil"	5 694	see "oil"	4	15	02	201	
73	_		2. Lake Maracaldo, venezuela (Inco Gas)	203	see "oil"	2 700	see "oil"	4	15	82	301	
75	_		6 Cusiana Venezuela	-50	see "oil"	1 480	see "oil"	1	23	21	78	
76			8. Cabinda, Angola	56	see "oil"	846	see "oil"	1	3	12	45	
77			10 Caan Mexico	86	see "oil"	622	see "oil"	1	5	9	33	
78		1998	21. Burgos Basin Gas Field, Mexico	219	13	3,170	187	3	12	46	168	
79			24. Tano Gas Field, Ghana	29	2	181	12	0	2	3	10	
80			Ex-Im Bank gas pipeline/plant projects									
81		1993	25. Yamal Gas Pipeline, Russia	3,400	200	68.000	4,000	49	180	1,472	5.399	
82			26. Maghreb Gas Pipeline, Algeria	219	13	4,380	258	3	12	95	348	
83			27. Gas liquefaction plant renovation, Algeria	1,000	59	20,000	1,176	14	53	433	1.588	
84			28. Atlantic LNG plant renov., Trinidad & Tob.	87	9	1,732	184	1	5	38	138	
85			29. Oman LNG plant, Oman	192	20	3,832	407	3	10	83	304	
86			30. Accro Gas Separation plant, Venezuela	146	25	2,920	508	2	8	63	232	
87			 Qatar Gas Field & LNG plant, Qatar 	173	21	3,464	421	3	9	75	275	
88			32. Copesul Petrochemical, Brazil		0.3		6			2	8	
89			 Corpoven LPG (included in Accro, Venez.) 									
90			37. Cryogenic LPG Plant, Mexico	219	13	4,380	262	3	12	95	348	<u> </u>
91	_		38. Gas Pipeline, Colombia	82	5	1,476	87	1	4	32	117	<u> </u>
92			New/other Ex-Im natural gas projects							included	above	_
93		1993	Enron oil and gas, India (OPIC & Ex-Im)	170			52			insufficient	data	<u> </u>
94		2002	Tiga LNG plant, Malaysia	1/8		3,568	10	3	9	77	283	<u> </u>
95		2003	San Fernando gas pipeline, Mexico							insufficient	data	<u> </u>
96			PEMEX strategic gas program, Mexico							insufficient	data	<u> </u>
97	-	1009	Nigeria Ling plant (Bonny Island)	1.005	57	21 000	1 147	16	EO	Insumcient	Uala 1 720	-
- 30		1550		1,000	57	21,500	1,147	10	50		1,739	-
99			Total indirect emissions, Ex-1m gas	7,963	438	150,345	8,716	115	422	3,152	11,557	
100				r								
101			Direct emissions									4
102			Elared gas at gas production facilities				Naithan Eu Tru	0.14	0.51	3,78	13.87	
103			Emissions from gas processing				nor Vallette	1.15	4.22	31.52	115.57	
104			CO2 emissions from gas pipelines				estimate direct	1.15	4.22	31.52	115.57	
105			Fugitive methane from gas ops (CO2-eg)				emissions	3.61	13.22	98.84	362.44	
106			Total direct emissions (C and CO2-equiv)					6	22	166	607	
107												
			Total omissions. Ex Im gas projects	7.062	420	150 245	9 716	121	111	2 217	12 165	1
108			rotal emissions, Ex-1m gas projects	7,903	438	150,545	0,710	121	444	3,317	12,105	4
109												

	Α	В	С	D	E	F	G	Н	Ι	J	К	L
110												
111												
112												
113			Oil	Overseas Private Investment Corporation								
114				Vallet	te data (O	PIC data	a na)		This re	port		
115				Peak production	Peak production	Total reserve	Total project	Peak production	Peak production	Total project	Total project	
116			Note on direct vs indirect emissions	Million bbl/yr	(MtCO2/yr)	Million bbl	(MtCO2)	(MtC-eq/yr)	(MtCO2-eq/yr)	(MtC-eq)	(MtCO2-eq)	_
117												-
118			Indirect emissions: OPIC oil projects									
119			OPIC oil projects (Vallette & SEEN)									
120			Pescada offshore oil and gas field, Brazil	İ		27	32			insufficient	data	
121		2002	West Seno oil and gas fields, Indonesia				47			insufficient	data	
122		1996	Gobe oil field, Papua New Guinea	45		95	40	5	18	10	37	
123		2000	Napa Napa oil refinery, Papua New Guinea	12		237	100	1	5	25	93	
124		2002	Vysotsky Island oil export terminal, Russia				550			insufficient	data	<u> </u>
125		2002	Pigap II oil field, Venezuela	47		040	552	F	10	Insufficient	data	<u> </u>
120		1997	El Furrial oli field, Venezuela West Falcon Oil Development, Venezuela	47		949	403	5	19	approved but	no contract	<u> </u>
122		1994	Polar Lights (Ardalin) oil field. Russia	13		110	47	1	5	12	43	-
129		1999	East Orenburg oil and gas field, Russia	19		376	181	2	7	40	147	
130		1997	Sakhalin II oil and gas, Russia	16		1,000	1,130	2	6	107	392	
131		1994	White Nights oil fields							approved but	inactive	
132		1996	Sotcheymu oil field, Russia							approved but	no contract	
133		1993	Sutormoran oil field, Russia					_		approved but	no contract	
134		92,98	Hunt oil and gas field, LNG plant, Yemen	51		1,015	1,264	5	20	108	398	
135			Total indirect emissions, OPIC oil	203		3,809	3,795	22	80	404	1,482	
136				-								
137			Direct emissions									
138			Elared gas at oil production facilities					0.02	0.06	0.32	1.19	-
139			Emissions from oil refinery operations				Neither OPIC nor	0.43	1.59	8.08	29.64	
140			CO2 emissions from oil transportation				Vallette estimate	0.22	0.80	4.04	14.82	
141			Fugitive methane from oil ops (CO2-eg)				unect emissions	0.27	1.00	5.07	18.59	
142			Total direct emissions (C and CO2-equiv)					0.94	3.45	17.52	64.24	
143			·	•								
144			Total emissions, OPIC-oil projects	203		3,809	3,795	23	83	422	1,546	
145												

A	В	С	D	E	F	G	Н	I	J	К	L
146											
147											
148											_
				Overs	eas Priva	ate Inve	stment Co	rnoration			1
149								poration			
150			Vallet	Vallette data (OPIC data na) This report							
151			Peak production	Peak production	Total project	Total project	Peak production	Peak production	Total project	Total project	-
152	-	Natural Gas	Billion cf/yr	(MtCO2/yr)	Billion cf	(MtCO2)	(MtC-eq/yr)	(MtCO2-eq/yr)	(MtC-eq)	(MtCO2-eq)	\square
153											—
		Indirect emissions: OPIC gas projects									1
154											<u> </u>
155		OPIC gas projects (Vallette & SEEN)									
156	1993	Alba oil and gas field, Equatorial Guinea	38		999	19	1	2	14	53	-
157	92,98	Hunt oil and gas field, LNG plant, Yemen	790.7		15,813	see "oil"	11	42	228	837	—
158	1993	Zeta Gas, LPG distribution, Guatemaia Enrop oil and das, India (OPIC & Ex-Im)	26		639	52	0	1	Insutticient	0ata 34	
160	2004	Mobil offshore NGL project, Nigeria	20		000	52	Ŭ	-	insufficient	data .	
161	1995	Miskar gas field, Tunisia			800				approved but	inactive	
162	1999	East Orenburg oil and gas field, Russia	21		413	see OPIC oil	0	1	6	22	I
163	2002	Sakhalin II oli and gas, Russia West Sone oil and gas fields. Indenesia	233		14,000	See OPIC OII	3	12	202 incufficient	741 .	
104	2002		1 1 0 0		22.664	47		50			
165		Total direct emissions, OPIC gas	1,108		32,664	118	16	59	460	1,687	i
166			ī							-	i
167		Direct emissions	-				1				
168		Flared gas at gas production facilities				Neither OPIC nor	0.02	0.07	0.55	2.02	i —
169		Emissions from gas processing				Vallette estimate	0.16	0.59	4.60	16.87	
171		Equitive methane from gas ons (CO2-eq)				direct emissions	0.10	1.84	14.43	52.90	
172		Total direct emissions (C and CO2-equiv)					1	3	24	89	1
173			1								<u> </u>
174		Total emissions, OPIC gas projects	1.108	-	32.664	118	16	61	474	1.740	-
174				1		1			1		-
175											
177											
178											
		Export-Import Bank of	the United	d States &	Overse	ac Drivat	o Investa	ent Corn	oration		1
179			the onited	a States o	Overse	as Filvat	e mvestn	ient corp	oration		1
190			Ex-Im,	OPIC, or	Vallette	data		This re	port		
181	-	Direct and indirect emissions	Peak production	Peak production	Total project	Total project	Peak production	Peak production	Total project	Total project	
182	-		Trillion cf/yr	(MtCO2/yr)	Trillion cf	(MtCO2)	(MtC-eq/yr)	(MtCO2-eq/yr)	(MtC-eq)	(MtCO2-eq)	
103			.,	,,			,,				
105		Indirect Ex-Im emissions Oil & Cas		1 1 9 7		27 926	252	1 204	7 336	26 E26	
185		Direct Ex-Till emissions, Oli & Gas	IId	1,107	IId	27,020	333	1,294	7,230	20,550	\square
186		Direct Ex-1m emissions, Oli & Gas	na		na	not estimated	16	60	543	1,257	
188											
100		Indirect OPIC emissions Oil & Gas	na		na	3,913	38	138	864	3,169	\square
193		Direct OPIC emissions, Oil & Cos				not estimated			40	153	-
190		Direct OPIC emissions, Oli & Gas	па		па	not estimated	2	/	42	153	
192										-	
		Total Ex-Im & OPIC Emissions		1 1 8 7		31 739	400	1 400	8 4 8 5	31 115	
193				1,107		51,759	409	1,459	0,403	51,115	
194						1				1	$ \rightarrow$
196	-			Of v	which methane (C-	eq and CO2-eq) =	7.4	27.0	170	622	\square
107	1			0.1				2710			

Cell: D4 Comment: Rick Heede:

This report relies extensively on published and un-published work by both Ex-Im Bank (1999) and OPIC (2000), and also by Wysham, Sohn, & Vallette (1999). We have also used updated (and revised) unpublished spreadsheets by Jim Vallette, a 2002 report by Sustainable Energy and Economy Network (available at www.seen.org), the extensive project database posted at the seen.org website, and memoranda written by uncited Ex-Im and OPIC staff.

These publications have been essential in our efforts to identify financed projects as well as their fuel type, installed equipment, generating capacity, marginal oil and gas reserves related to financed projects, and anticipated peak or annual production rates. Neither Ex-Im nor OPIC publish details on their financed projects in their regular or annual reports. The emissions estimation protocols of both Export Credit Agencies and that of Wysham et al have been reviewed. These protocols have been not been adopted in the present work, however. The most significant differences between the previous and the current emissions accounting protocols are (a) our inclusion of several categories of indirect emissions, (b) our adoption of longer (and realistic) operating lives for power plants financed by Ex-Im or OPIC, and (c) inclusion of emissions flowing from Ex-Im/OPIC-financed oil and gas extraction projects (both ECAs disavow accounting for emissions from oil and gas fuels merely facilitated by their financial support). See the attached Declaration and the comments embedded in this spreadsheet for details.

We have made every effort to be as complete, judicious, and accurate as available data allow.

Richard Heede, Climate Mitigation Services, 1626 Gateway Road, Snowmass, Colorado 81654 USA 1-970-927-9511 heede@climatemitigation.com

-Rick-= 20Dec04

Cell: G9

Comment: Rick Heede:

Export-Import Bank (1999) "Ex-Im Bank's Role in Greenhouse Gas Emissions and Climate Change" Appendix B, Washington, DC.

Wysham, Sohn, & Vallette (1999) "OPIC, Ex-Im, and Climate Change: Business as Usual?" Institute for Policy Studies, Washington, www.seen.org.

Sustainable Energy and Economy Network (2002) "Overseas fossil fuel and renewable energy financing by U.S. government agencies (OPIC and ExIm) Since the 1992 Earth Summit" www.seen.org.

Vallette, Jim (2004) revised spreadsheets of Ex-Im and OPIC projects, plus master list of ECA and World Bank energy lending portfolios (updated to Jul04).

Cell: C10

Comment: Rick Heede:

Ex-Im does estimate indirect emissions resulting from downstream combustion of oil products and natural gas resulting from their oil & gas sector financing, although the agency report does not consider such emissions as attributable to the agency. Our analysis does include such indirect emissions from downstream consumers. We rely on Ex-Im's better knowledge of the reserves and production rates from each project financed in the list below (projects numbered 1-23 refer to Ex-Im's project numbering in Ex-Im 1999, Ex-Im Bank's Role in Greenhouse Gas Emissions and Climate Change). While Ex-Im states that direct emissions—"such as those from flaring"—are properly counted, Ex-Im does not offer such an

account in its 1999 report. Furthermore, Ex-Im's methodology is flawed. Ex-Im calculates (but excludes, as noted above) the carbon dioxide from downsteam combustion of annual production and the proven reserves expected to be produced from each oil and gas project supported by the Bank; not all such oil and gas products are likely to be combusted, however, and a portion should be properly deducted to more accurately reflect potential carbon emissions. Our report makes this adjustment for both oil and gas by deducting 9 percent and 2.9 percent of oil and gas production, respectively, to account for non-fuel uses. Nor does Ex-Im estimate direct emissions from the oil and gas projects, such as gas flaring, vented CO2, emissions from energy inputs to refineries and pipelines, and fugitive methane from oil and gas operations—even though Ex-Im acknowledges that direct emissions should be included. The Ex-Im report states: "the equivalent GHG emissions that may be produced from the fuel extraction projects supported by Ex-Im Bank are not included in the aggregate of GHG emissions assigned to Ex-Im Bank for purposes of measuring its impact on global temperature change (with exception of actual emissions, such as those from flaring—directly associated with the operation of such projects)." (Ex-Im 1999, p. 30.)

This accounting of carbon dioxide and methane emissions from Ex-Im Bank and OPICfinanced oil and gas extraction, processing, and transportation projects essentially adopts the corporate or national accounting protocols as described in the WBCSD/WRI Greenhouse Gas Protocol, the IPCC guidelines for national emissions accounting, or the IPIECA and API oil and gas sector guidelines. However, this report also includes in its estimates the indirect emissions from the downstream use of the products marketed and delivered by the projects financed by Ex-Im Bank and OPIC; that is, we include the combustion of oil and gas products by ultimate consumers of those products whose extraction and delivery is facilitated by and thus attributable to Ex-Im and OPIC as indirect emissions.

Cell: J10

Comment: Rick Heede:

Our estimate of carbon dioxide emissions resulting from the extraction of crude oil from Ex-Im Bank and OPIC-financed projects first takes account of the (1) the fraction of oil expected to be combusted in end-use vehicles, power plants, and other marketed oil products, and (2) the carbon content of the fuels refined into marketed products. (Note: Ex-Im, OPIC, and Wysham et al do not account for oil products sequestered into non-combusted products such as asphalt, motor oil, lubricants, waxes, solvents, and petrochemicals.

Method 1: EIA (2004) Annual Energy Review 2003, Table 1.15: 5.24 Q non-fuel oil uses of 38.183 Q (burned as fuel; non-fuel percentage is 5.24 / (5.24 Q + 38.183 Q) = 5.24/43.423 = 12.07 percent of petroleum products supplied.

Method 2: Table 5.11 (PDF p.183): Asphalt and Road oil: 187.2 million bbl/yr Lubricants: 55.1 million bbl/yr Other:* 523 million bbl/yr Subtotal (non-fuel uses): 765.3 million bbl/yr, or 10.67 percent Of total oil products supplied: 7,174.4 million bbl/yr

* "Other" comprises chiefly petrochemical feedstocks as well as still gas, waxes, natural gasoline, pentanes plus, distillate and residual fuels reclassified as unfinished oils, crude oil burned as fuel, and miscellaneous products.

Method 3: Following our previous work (ExxonMobil Corporate Emissions Inventory, 1882-2002), in which we adjust Exxon's marketed non-combusted products by accounting for oxidation of "Specialty Products" such as a fraction of motor oils, lubricants, rocket fuel, special naphthas, waxes, and solvents, we concluded that 9.4 percent of ExxonMobil's

marketed products were sequestered rather than combusted or oxidized.

We further note that Ex-Im Bank and OPIC fund oil and gas extraction in Asian, Russian, Africa, and Latin American economies in which non-fuel uses presumably comprise a smaller fraction of total petroleum supplied than in the United States (few countries build as many roads or use as much plastic as the U.S. economy does).

Conclusion: We thus conclude that a reasonable fraction of total extracted crude oil diverted to non-combusted uses is 9.0 percent. Future research may refine this estimated fraction, however.

The formula for the combusted fraction of Ex-Im or OPIC oil field, refinery, and pipeline portfolio is: (column F)*0.91*5.8*20.25/1000

including the following terms: Total reserve X 0.91 (combusted fraction = 1.00 - 0.09) X 5.8 million Btu/bbl X 20.25 million metric tonnes of carbon per Quad (10^{15} btu) X 1000 ----> million tonnes carbon (MtC).

Cell: K10

Comment: Rick Heede:

This report's results are typically ~11 percent lower than Ex-Im's own calculations. The methodology stated in Ex-Im (1999), Appendix B are too vague for us to discern the reasons for their over-estimate (for example, are indirect emissions from oil extraction and processing included? We cannot tell, but quote: "In general, emissions as calculated have been assigned (accounted for) at the fuel consumption level only (electricity generation, manufacturing processes, and transportation) and not at the fuel production level other than due to associated flaring, passive leaks, or other onsite consumption/gas emittance." If such direct emissions from oil extraction and processing are indeed included, no factors or formulas are shown.

Furthermore, Ex-Im uses very general emissions factors (for example, not based on carbon emissions, but on the carbon content of petroleum at 87 percent carbon; 84 percent carbon is probably a better figure). This is an imprecise way of accounting for emissions.

This report's direct emissions estimates are shown separately, below, and are explicit and transparent in order to facilitate later refinements and adjustments.

Note also that Ex-Im data (column E and G) are in short tons, whereas we show data in metric tonnes. Itonne = 1.1023 sh tons.

Consequently, once adjusted for metric vs Imperial units as well as our debit of noncombusted extraction, our results match Ex-Im's, indicating that Ex-Im does not include direct emissions, the quote from Ex-Im above suggesting that direct emissions are (or should be) included, notwithstanding.

Cell: E11

Comment: Rick Heede:

Ex-Im Bank reports emissions from power plants in metric tonnes, but their oil and gas projects in (apparently) short "tons." Hence we use "MshtCO2/yr)" in this column header.

Cell: C13

Comment: Rick Heede:

Source of projects: Ex-Im Bank (1999) Ex-Im Bank's Role in Greenhouse Gas Emissions and Climate Change, revised, Appendix C.

Cell: C14 Comment: Rick Heede:

Comment: Rick Heede

Estimates of emissions from Ex-Im or OPIC-financed oil refinery upgrades use a different methodology. Rather than based on Total Reserve data (irrelevant for refineries), we use Ex-Im or OPIC's emissions estimates (even though it's not clear what they include or exclude), first adjusting their short ton data to tonnes, then applying the non-combusted fraction to the Ex-Im estimate of "Total CO2" emissions over the project life (assumed to be 20 years).

In practice, since it appears that our calculations match those of Ex-Im and OPIC, we simple use Ex-Im and OPIC estimates of "Total CO2" emissions over the project life (assumed to be 20 years), multiply by 0.9072 (convert to tonnes) then multiply by 0.91 (the combusted fraction of oil extracted or refined). Finally, we adjust Ex-Im's assumed project life from 20 years to 30, a more realistic duration.

The formula is: Ex-Im/OPIC "total CO2" emissions (column G) X 0.9072 X 0.91 X 1.5 (additional 50 percent project life).

Cell: C18

Comment: Rick Heede:

Ex-Im Bank has financed this project in several cycles, most recently in 2000 with \$400 million and 2001 with \$300 million and again in 2002 with \$300 million, according to Vallette master list.

Www.seen.org: "based on Exim calculation: "Independent Engineering report assigns total remaining reserves of 13.8 billion barrels and 15 trillion cubic feet of gas. Ex-Im supported actions contribute to recovery of 2.5 billion barrels of oil and 2.7 trillion cubic feet of gas with associated peak annual production of 400 million barrels and 438 billion cubic feet of gas. Total CO-2 is 1,360 million tons. Peak annual CO-2 is 218 million tons. (Expected)."

Cell: C21

Comment: Rick Heede:

Vallette, Angola 1998-2000 Ex-Im funding of \$366 million.

www.seen.org: "Based on OPIC estimate: "Sponsor Engineering reports assign total proved + probable reserves of 2.2 billion barrels of oil and 1.8 trillion cubic feet of gas with associated project peak annual production of 277 million barrels and 119 billion cubic feet of gas. Ex-Im supported actions contribute to recovery of 1.0 billion barrels of oil and 846 billion cubic feet of gas with peak annual production of 127 million barrels and 56 billion cubic feet of gas. Total CO-2 is 529 million tons. Peak annual CO-2 is 64.3 million tons." (Exim Greenhouse Gas report, 1999)"

Cell: C22

Comment: Rick Heede:

Ex-Im says project was cancelled. Www.seen.org cites estimated total emissions of 161.2 million tonnes but acknowledges that while Ex-Im approved the \$27.1 million project, "no contract was issued."

Cell: C23

Comment: Rick Heede:

Sources: SEEN database at www.seen.org, Jim Vallette's updated spreadsheets on Ex-Im Bank and OPIC projects, and especially Vallette's Master spreadsheet on all ECA energy-related projects (updated to Jul04).

Note: Unlike Ex-Im data, Vallette's data is in metric tonnes of CO2. However, we account for non-fuel / non-combusted uses of oil and gas extraction by multiplying Vallette's CO2 estimate by 0.91 (9 percent non-combustion).

Cell: C27

Comment: Rick Heede:

Ex-Im (1999), project #14: "Chernogornorneft Oil Field System Rehabilitation" and total CO2 of 15.1 million tons.

www.seen.org: project called "Chernogorskoye oil field" Total project emissions "based on reserves of 100 million barrels of oil. ExIm estimated a lower amount of CO-2 emissions from its investments within the oil field: "Independent Engineering report assigned proved + probable reserves of Ex-Im supported actions at 31.4 million barrels of oil with peak annual production of 11 million barrels. Total CO-2 is 15.1 million tons. Peak annual CO-2 is 5.3 million tons. (Expected)." (Exim GHG report 1999).

Although SEEN cites reserves of 100 million bbl, we cite here the Ex-Im estimate of 31.4 million bbl. A likely conservatism.

Cell: D27

Comment: Rick Heede:

Ex-Im data incomplete (LNG production listed as 3.3 million tons). LNG is typ 87.6 kBtu/gal, assume 6.5 lb/gal ---> 26.95 million Btu/ton, at 1,027 Btu/cf = 26.25 cf/ton; "Greenfield LNG system with projected annual throughput of ~ 3.3 million tons (Ex-Im, 1999, p. B-4) 3.3 million tons LNG thus equates to approx 86.6 billion cubic feet of natural gas per year (not counting large amounts of energy required for the liquefaction process).

Cell: J29

Comment: Rick Heede:

Condensate has a lower carbon emission factor than crude oil: 16.99 million tonnes carbon per Q of condensate.

Cell: C30

Comment: Rick Heede:

Gas-related emissions are calculated in the Table below. Tano also expects condensate production of 0.36 million bbl/yr and a condensate reserve of 2.28 million bbl. Condensate has a lower carbon emissions value.

Cell: C31

Comment: Rick Heede:

Vallette master, Brazil, OPIC 2000 guarantee of \$100 million of this Unocal and El Paso Energy project. Estimated 31.5 million tonnes CO2. No oil or gas reserve estimate is cited.

www.seen.org: estimate zero production. Also: "The agreement covers the acquisition of an initial 79% participating interest from Petrobras in five concession areas containing five proven oil and gas reservoirs, plus an initial 35% interest in a 55,000 acre exploration block. Potiguar II's participating interest in the project will be adjusted in the future in accordance with the economic performance of the project. The properties in 65 feet of water offshore the northeastern Brazilian state of Rio Grande do Norte, have gross proved developed and undeveloped reserves of 27 million barrels of oil and 381 billion cubic feet of gas. The concessions also hold an estimated additional gross resource potential of 40 to 60 million barrels of oil equivalent."

Cell: C37

Comment: Rick Heede:

"Unknown project to Ex-Im Bank 1999. Appears in Vallette master ECA list as "Panipat petrochemical refinery" Ex-Im 2003 funding of \$75.1 million; emissions not estimated. www.seen.org database: not mentioned. Project not included here (insuffient data).

Cell: C38 Comment: Rick Heede: 50 billion cubic feet of gas/yr + 80,000 tons of LPGs/yr, and 330,000 bbl/yr. Ex-Im (1999) did not disaggregate its emissions estimate, and we run their estimated "Total CO2" emissions in lieu of a commodity-based calculation.

Cell: C39

Comment: Rick Heede:

Sources: SEEN database at www.seen.org, Jim Vallette's updated spreadsheets on Ex-Im Bank and OPIC projects, and especially Vallette's Master spreadsheet on all ECA energy-related projects (updated to Jul04).

Note: Unlike Ex-Im data, Vallette's data is in metric tonnes of CO2. However, we account for non-fuel / non-combusted uses of oil and gas extraction by multiplying Vallette's CO2 estimate by 0.91 (9 percent non-combustion).

We have not included carbon emissions from the two Ex-Im coal-related projects identified: Raspadsky (Russia) surface coal mine: Vallette master list: Coal investment by Ex-Im, 2003 of \$22.6 million; no CO2 emissions estimate.

Karbo (Russia) coal mining equipment: Vallette master list: Ex-Im 2004 \$9.8 million; no estimate of CO2 emissions or coal mined or nature of project. Not included here.

Cell: G39

Comment: Rick Heede:

That is, metric tonnes. Ex-Im data above is in short tons.

Cell: C40

Comment: Rick Heede:

www.seen.org database: "Based on 14 million tons of operation, for 20 years" and "In 1995, Exim supported a \$59.9 million contract in which Stone & Webster Engineering Corp. supplied engineering services to Yaroslavenfteorgsintez for a petroleum refining project. This followed an Exim board authorization of \$56.4 million guarantee for this project."

14 million tonnes of oil throughput = 102.2 million bbl/yr, over 20 yrs = 2,044 million bbl.

Slavneft website: "The enterprise's primary crude refining capacity is 14 mln tons.... by 1995, a complex of installations had been constructed at the refinery that provided for production of white and black products, liquefied gas, petrochemical raw material and lubricants. The refinery produces a wide range of oil products, such as: straight-run (virgin) gasoline, motor gasoline, aviation kerosene, summer and winter brand of diesel fuel, fuel oil, liquefied gas, base and commercial lubricants (for carburettor and diesel engines, as well as motor universal semi-synthetic, synthetic, industrial, transmission, turbine, and vacuum oils), bitumen, tar, sulfuric oil, solvents, paraffin-wax products."

Cell: C41

Comment: Rick Heede:

Vallette updated ECA master spreadsheet (under Azerbaijan). 2003 Ex-Im fuding of \$160 million, plus OPIC funding of \$100 million. Estimated 3,100 million tonnes CO2.

www.seen.org: "Based on planned capacity of 50 million tons per year, for 20 years." and ""The Export-Import Bank of the United States (Ex-Im Bank) today approved a \$160 million long-term guarantee to support the export of U.S. equipment and services for construction of the Baku-Tbilisi-Ceyhan Pipeline project (BTCP). The Bank acted after referring the transaction to Congress and the expiration of a statutory 35-day waiting period during which no comments were received." ("Ex-Im Bank approves \$160 million guarantee to support Baku-Tbilisi-Ceyhan pipeline," U.S. Export-Import Bank, Dec. 30, 2003)."

Note: we have not verified Vallette's estimate of 50 million tonne pipeline throughput per

year over 20 years (= 365 million bbl/yr = 7,300 million bbl total).

Note: A 20 year time-horizon may be too short for a \$3.7 billion project and Central Asia's vast oil reserves. Up project life to 30 years, as elsewhere?

Cell: C43

Comment: Rick Heede:

The SEEN database (www.seen.org) shows projected oil and gas emissions "based on estimated reserves of 1.2 billion barrels of oil (164.4 million tons)."

We assume the standard 20-year project life applies, thus annual production (and our annual CO2 emissions estimate) is 1.2 billion bbl/20 = 60 million bbl/yr.

Cell: C44

Comment: Rick Heede:

Vallette: 2000 Ex-Im Bank funding of \$158 million, plus OPIC funding of \$250 million in 2000. Vallette estimates 445.9 million tonnes CO2 over this oil field and pipeline project life "based on 225,000 bpd capacity, for 20 years." Vallette's estimate 0f 446 million tonnes of CO2 appears to be low. Check.

Cell: C45

Comment: Rick Heede:

Vallette master ECA spreadsheet. China, West East gas pipeline, 2004 Ex-Im financing of \$40 million. Cites no estimate of oil throughput or CO2 emissions. www.seen.org: not listed. Project not included here (insuffient data).

Cell: C46

Comment: Rick Heede:

Vallette master: 2000 Mexico, Ex-Im financing of \$88.7 million, estimated emissions of 106 million tonnes CO2 "based on anticipated production of 250 million barrels of oil equivalent due to this program;" and " In 2000, Exim financed a \$94.4 million contract in which Schlumberger Technology Corp. and Western Geophysical supplied drilling fluids and services to this Pemex (Petroleos Mexicanos) oil field project."

Cell: C47

Comment: Rick Heede:

Vallette masterlist: 2003, Mexico, Ex-im financing of \$400 million, but no estimate of CO2 emissions or oil and gas throughput.

www.seen.org: no entry. No estimate included here (insufficient data).

Cell: C48

Comment: Rick Heede:

www.seen.org: Based on production of 140 million tons (@ 7.3 bbl = 1,012 million bbl) of oil over a 20 year period. "In 1999, Exim financed a \$159.8 million contract in which Siemens Corp. supplied instrumentation and control equipment to Pemex for a petroleum refinery upgrade."

Cell: C49

Comment: Rick Heede:

www.seen.org; Salamance oil refinery expansion, emission estimate "based on 3.65 million barrels of oil per year, for 20 years." and "In 2000, Exim financed a \$29 million contract in which Samsung Engineering America supplied engineering services to the Salamanca oil refinery." Estimated 31 million tonnes CO2 or ver project life (20 years).

Cell: C50 Comment: Rick Heede:

www.seen.org: 1991 Ex-Im financing; "based on 50,000 bpd production" = 18.25 million bbl/yr for 15 years = 237.75 million bbl and "116.25 million tonnes CO2." Also in Vallette master list, but as "Mobil offshore," 2001 Ex-Im financing of \$10 million and 116 million tonnes CO2 (as above).

Cell: C51

Comment: Rick Heede:

Vallette master list: Amakpe-Eket crude oil refinery, Nigeria, Ex-Im Bank funding of \$10.3 million in 2004; no estimate of CO2 emissions or oil throughput. www.seen.org: no record in ECA project database. Carbon emissions no estimated (lack of data).

Cell: C52

Comment: Rick Heede:

Vallette mast list: 2001 Ex-Im Bank financing of \$503.6 million; Estimated CO2: 892 million tonnes CO2.

Check www.seen.org: "2.1 billion barrels of oil = 287.7 million tons of oil, which will release 891.2 million tons of CO-2 when burned" and "In 2001, ExIm supported a \$503.6 million contract in which Fluor Enterprises provided technical services to Petrolera Ameriven S.A. for "Hamaca heavy oil upgrading."

Cell: C55

Comment: Rick Heede:

The aim of this report is to account for both direct and indirect emissions of greenhouse gases that result from the projects financed by Ex-Im Bank and OPIC, regardless of the ECAs level of financial involvement. Direct emissions are typically defined as arising from facilities owned or controlled by the entity in question. Thus emissions from fuels combusted at Ex-Im and OPIC-financed power plants are considered direct emissions by both ECAs, the Wysham et al reports by the Sustainable Energy and Economy Network, and this report. In the power sector we also included indirect emissions from their fuel combustion, e.g., fugitive methane from coal mines, and emissions from oil refineries whose emissions are attributable to the entities that create the demand for the fuels.

Ex-Im Bank and OPIC conclude that emissions from projects financed in the oil and gas sector are neither direct nor indirect, and neither agency account for any emissions from these projects (although Ex-Im does estimate emissions from oil and gas projects 1988-1999 in their 1999 report, but conclude, nonetheless, that such emissions are not attributable to the agency). This report does not concur: Ex-Im and OPIC financing of oil and gas projects assist in the construction of carbon extraction projects, and it is immaterial whether the foreign governments or their corporate partners own or control the equipment that ultimately convert the carbon fuels into carbon dioxide. The ECAs have enabled additional carbon to enter the global economy in an era when it is widely acknowledged that the world's economies must take serious steps to reduce emissions. Granted, both Ex-Im and OPIC also invest in low- and zero-carbon electric generation, and both ECAs appear to be increasing such investments. Furthermore, both agencies invest in new and rehabilitation plants that improve the efficiency of oil and gas extraction and power generation projects.

This report thus considers the eventual combustion of the oil products and dry natural gas flowing from Ex-Im and OPIC-financed projects as direct emissions attributable to these agencies. Furthermore, we designate and account for related emissions -- such as methane leakage from gas pipelines or processing energy used to refine crude oil into marketable products -- as direct emissions. (Note: both Ex-Im and OPIC do consider such direct emissions as attributable to them, since the emissions occur within the owned or controlled facilities financed by them [as opposed to emissions from downstream consumers], but neither agency makes an attempt to estimate the emissions.) This report does estimate

these direct emissions from Ex-Im and OPIC-financed oil and gas operations.

Ex-Im's 1999 report does not offer an accounting of direct emissions resulting from their oil & gas sector project financing, even though the text avers that direct emissions are rightly counted.

Cell: C56

Comment: Rick Heede:

See the "CO2 from flared gas at natural gas production facilities" below for details.

Significant quantities of gas is flared at oil production, processing, storage, and delivery facilities. This in an indirect emission of carbon dioxide attributed to Ex-Im and OPIC-financed oil-fired power plants. We allocate 60 percent of this flaring rate to gas and 40 percent to oil production, processing, storage, and delivery. Gas flaring attributable to oil thus becomes 2 percent x 0.4 = 0.8 percent.

The formula is thus: current and future (over the 40-year operating life) emission from gas consumed at Ex-Im bank/OPIC gas-fired power plants x 0.008.

Cell: C57

Comment: Rick Heede:

The previous worksheet on power plants on indirect emissions includes an estimate of the emissions arising from the energy used to operate refineries (conservatively, 4 percent). This indirect emission source is reduced for extraction and refining of crude oil, since refineries typically use their own oil products to operate the refineries (except for purchased steam, for example). In the current case, emissions associated with steam and electricity purchased from other providers (in which case these emissions are considered "indirect").

The data we have for Ex-Im and OPIC oil extraction projects are amounts of oil lifted per year (or peak production) or over the duration of its proven recoverable reserves (typically assumed to be 20 years, unless specified by other productoin plans) -- and all of the carbon therein is either combusted at refineries or delivered to consumers or sequestered into non-combusted products (which we account for in "Indirect emissions" above) -- we do not estimate additional direct emissions from oil extraction projects.

We do, however, add 2.0 percent of carbon emissions from oil projects as an estimate of direct emissions at refineries from on-site power generation or combined heat and power. This factor may prove conservative, but at least we know it is not zero.

The formula is thus: carbon emissions from oil extraction and refinery operations financed by Ex-Im and OPIC X 0.02.

Cell: C58

Comment: Rick Heede:

We use Argonne National Laboratory's GREET model as guidance to making an estimate on other fuel cycle energy inputs to transportation of crude, natural gas, and petroleum products from "wells to wheels."

Crude oil shipping by tankers (VLCCs): GREET assumptions: 5,080 miles average distance, 19 mph average speed, 4,763 Btu per horsepower-hour (typical tanker shaftpower = 124,500 HP); result: 6,089 Btu energy input to move one million Btu of crude oil, or 0.61 percent. Of course, not all oil company crude to refineries arrive by ocean-going tankers, so we dilute this adder by 0.57 (US averages 57 percent imported crude + products), thus the formula is 0.61% x 0.57 = 0.348 percent of total products marketed. Note: we believe the GREET estimates include energy required to back-haul a tanker, but this is uncertain; if not, GREET data suggest that backhauling a VLCC requires 20 Btu per ton-mile (vs 22 Btu/ton-mile for the front-haul). See GREET.xls, worksheet on Transportation and Distribution, section #9.

Pipelines: GREET assumptions: distance pipelined (750 miles for crude, 400 miles for products from refineries to tank farms), 270 Btu per ton-mile; results: 3,815 million Btu of petroleum input to pipeline transport of one million Btu of crude oil (1,998 Btu per million Btu of gasoline pipelined). Note: this excludes other energy inputs, such as gas or electricity used in pipelines, which brings the pipeline energy input to 6,129 Btu per million Btu of crude thus transported.) Dilution: assume that 43 percent of crude is shipped to refineries by pipeline (thus $0.43 \times 3,815 = 1,640$ Btu per million Btu of total crude shipped), plus assume that all products are pipelined from refineries to tank farms (at 1,998 Btu per million Btu of refined products); total 1,640 + 1,998 = 3,638 Btu per million Btu, total energy input to pipeline of crude and products, or 0.364 percent.

Conclusion: oil inputs to transportation of 0.763% (for domestic waterborne shipping) + 0.348% (for crude oil and products transport by ocean-going tankers) + 0.364% (for pipeline of crude and products) = 1.475 percent. Detailed analysis will probably find this result to be conservative.

The formula is thus: carbon emissions from oil consumed in Ex-Im and OPIC-financed oilfired power plants x 0.0148.

Note: Not included in this or any other direct emissions estimate of OPIC and Ex-Im projects is the considerable energy and emissions embodied in the construction of the power plants and the infrastructure to extract, refine, and deliver fuel; nor is the energy invested in building electric transmission grids included in the power plant worksheets.

Sources: Stacy Davis (2001) Transportation Energy Data Book, edition 21, U.S. Dept of Energy, Center for Transportation Analysis, Oak Ridge National Laboratory, Oak Ridge, TN. Tables 12-4, 12-5, and 1-11., and personal communication.

Michael Q. Wang, Argonne National Laboratory, GREET model, www.transportation.anl.gov/greet/index.html, and personal communication 18Jul03.

We estimate direct emissions from oil transportation to equal a conservative 1.0 percent of the carbon in the transported oil. This may prove conservative with additional research into this source of direct emissions attributable to Ex-Im and OPIC-financed projects.

The formula is thus: carbon emissions from oil extracted, refined, or transported in Ex-Im and OPIC-financed oil-projects X 0.01.

Cell: C59

Comment: Rick Heede:

Fugitive methane leakage from gas pipelines can be as high as 5 percent of throughput in older systems. New pipelines with modern flanges, valves, seals, and compressors are typically 0.5 to 1.0 percent (OPIC 2000 p. 12 cites leakage estimates ranging from 0.5 to 5.0 percent). Since Ex-Im and OPIC invest in new and presumably state-of-the-art projects and rehabilitation projects, we assume a world-wide fugitive methane rate of 0.5 percent on all Ex-Im and OPIC gas projects. This rate is applied to all gas-related projects to capture methane leakage from gas pipelines, gas production facilities, processing, liquefaction plants, and un-burned methane at flares. Future research may refine this methodology. A smaller fraction (0.2 percent) is applied to Ex-Im and OPIC-financed oil projects, above, to account for methane leakage from oil operations, oil pipelines, oil storage (CH4 "flashing" losses alone are estimated at 0.885 kg CH4 per barrel in oil tank farms (American Petroleum Institute, 2001, Greenhouse Gas Compendium), oil production sites, incomplete flaring, and

so on.

To convert this estimated fugitive methane emission rate into carbon equivalent, we use IPCC's GWP of CH4 = $23 \times CO2$, translating to 1 unit of methane = $6.272 \times Carbon-equivalent.*$

The formula is: carbon emissions from annual and total project throughput (columns E and G) X 0.002 (0.2 percent) X 6.272 = tonnes of methane in carbon-equivalent (column H and J) -- which is converted to CO2-equivalent by multiplying C-eq by 3.667 in columns I and K.

* To convert fugitive methane emissions to carbon-equivalent emissions: multiply methane emissions by 23 (the methane global warming potential factor [GWP] CH4:CO2) and divide by 3.667 (CO2:carbon), 23/3.667, or a factor of 6.272.

Note: the global warming potential of methane has been revised from 21 x CO2 to 23 x CO2 by the IPPC. Source: Houghton, J. T. et al (2001) Climate Change 2001: The Scientific Basis, Working Group One, Third Assessment, IPPC, Cambridge University Press, p. 388.

Cell: G68

Comment: Rick Heede:

Export-Import Bank (1999) "Ex-Im Bank's Role in Greenhouse Gas Emissions and Climate Change," Appendix B, Washington, DC.

Wysham, Sohn, & Vallette (1999) "OPIC, Ex-Im, and Climate Change: Business as Usual?" Institute for Policy Studies, Washington, www.seen.org.

Sustainable Energy and Economy Network (2002) "Overseas fossil fuel and renewable energy financing by U.S. government agencies (OPIC and ExIm) Since the 1992 Earth Summit" www.seen.org.

Vallette, Jim (2004) revised spreadsheets of Ex-Im and OPIC projects, plus master list of ECA and World Bank energy lending portfolios (updated to Jul04).

Cell: J69

Comment: Rick Heede:

Our estimate of carbon dioxide emissions resulting from the extraction of natural gas from Ex-Im Bank and OPIC-financed projects first takes account of the (1) the fraction of gas expected to be combusted, and (2) the carbon content of the fuels refined into marketed products. (Note: Ex-Im, OPIC, and Wysham et al do not account for natural gas sequestered into non-combusted products such as petrochemicals and fertilizers.

EIA (2004) Anuual Energy Review 2002, Table 1.15: 0.68 Q of 23.062 burned as fuel, thus 0.68Q/(0.68 + 23.062Q) = 2.86 percent of natural gas supplied.

Conclusion: We thus conclude that a reasonable fraction of total extracted natural gas diverted to non-combusted uses is 2.86 percent. Future research may refine this estimated fraction.

The formula is: =(column F)*0.91*5.8*20.25/1000and terms: Total reserve X 0.9714 (combusted fraction = 1.00 - 0.0286) X 1.027 million Btu/bbl X 14.47 million metric tonnes of carbon per Quad (10^{15} btu) X 1000 ----> million tonnes carbon (MtC).

Cell: K69

Comment: Rick Heede:

See discussion under Ex-Im "oil" above.

Cell: C72

Comment: Rick Heede:

Listed as annual 146 billion cf gas plus 36.5 million bbl of NGLs. Our estimate adjusts Ex-Im's emissions estimate as described above.

Cell: E73

Comment: Rick Heede:

Ex-Im 1999, Appendix B, did not calculate oil and gas emissions separately; gas emissions included under "Oil."

Cell: G73

Comment: Rick Heede:

Ex-Im 1999, Appendix B, did not calculate oil and gas emissions separately; gas emissions included under "Oil."

Cell: C80

Comment: Rick Heede:

Estimates of emissions from Ex-Im or OPIC-financed gas pipelines use a different methodology. Rather than based on Total Reserve data (irrelevant for pipelines), we use Ex-Im or OPIC's emissions estimates, first adjusting their short ton data to tonnes, then applying the non-combusted fraction to the Ex-Im estimate of "Total CO2" emissions over the project life (assumed to be 20 years).

In practice, since it appears that our calculations match those of Ex-Im and OPIC, we simple use Ex-Im and OPIC estimates of "Total CO2" emissions over the project life (assumed to be 20 years), multiply by 0.9072 (convert to tonnes) then multiply by 0.91 (the combusted fraction of oil extracted or refined). Finally, we adjust Ex-Im's assumed project life from 20 years to 30, a more realistic yet conservative project duration. Note: Check on typical gas pipeline project life (could average 50 or more years).

The formula is: Ex-Im/OPIC "total project in billion cf" (column F) X 0.9714 (combusted gas fraction) X 1.027 kBtu/cf X 14.47 million tonnes carbon per Q Btu X 1.5 (additional 50 percent project life)/1000 (unit normalization).

=F92*0.9714*1.027*14.47*1.5/1000

Cell: C87

Comment: Rick Heede:

6.6 million tons LNG (listed here in column D based on formula in "Atlantic LNG" above). Plus throughput of 5.8 million bbl of condensate per year. We adjust Ex-im CO2 emissions as explained above.

Cell: C88

Comment: Rick Heede:

Ex-Im correctly uses the petrochem plant's fuel use (rather than its 495,000 ton throughput of ethylene olefins). Lacking project details, we adopt Ex-Im's total project CO2 estimate (6.1 million tons over 20-year project life), but convert to tonnes and project life to 30 years.

Cell: C92

Comment: Rick Heede:

Sources: SEEN database at www.seen.org, Jim Vallette's updated spreadsheets on Ex-Im Bank and OPIC projects, and especially Vallette's Master spreadsheet on all ECA energy-related projects (updated to Jul04).

Cell: C93

Comment: Rick Heede:

Vallette as 1993 OPIC \$200 million + Ex-Im Bank \$35 million, estimated 52 million tonnes CO2: "Enron India oil and gas development" but not listed in Ex-Im report 1999. www.seen.org: not listed.

Cell: C94

Comment: Rick Heede:

Vallette master list: Ex-Im 2000 funding of \$84.7 million. Estimated emissions of 9.57 million tonnes CO2.

Www.seen.org: "6.8 million tons natural gas per year, 20 years operation." and "In 2000, Exim financed a \$84.7 million deal in which Air Products and Chemicals sold cryogenic heat exchangers to Malaysia LNG Tiga."

Erroneous data from seen.org: 6.8 million tonnes of natural gas per year converts to 340 billion cf/yr* which means a carbon flow of 540 million tonnes of CO2 over 20 years, not seen.org's "9.57 million" tonnes. Natural gas is not typically measured in tonnes, although LNG often is; if "6.8 million tons per year" refers instead to LNG output, then the CO2 emissions are based on ~178.4 billion cf/yr (see calculation under "Atlantic LNG plant of 3.3 million tonnes LNG/yr), which means 9.4 million tonnes of CO2 per year. We conclude that this is likely the datum meant by seen.org, and enter a natural gas throughput of 178.4 billion cf/yr.

* At www.chemlink.com.au/conversions.htm: 1 TCF = 20 million tonnes. Thus "6.8 million tons natural gas per year" equals 0.34 TCF/yr = 340 billion cf/yr.

Cell: C95

Comment: Rick Heede:

Vallette master ECA list: Mexico, Ex-Im funding of \$73.4 million; no estimate of CO2 emission or gas throughput. Nor is this project listed at www.seen.org. Project is therefore not included here (insufficient data).

Cell: C96

Comment: Rick Heede:

Vallette master list: "PEMEX strategic gas program, 2004 Ex-Im financing of \$200 million, but no details on nature of project, reserve or production stats, or CO2 emission estimate. Project not included here (insufficient data).

Cell: C97

Comment: Rick Heede:

Vallette master ECA list: 2002 Ex-Im funding of \$135 million, no estimated gas throughput. Not listed at www.seen.org. No data upon which to base emissions estimate.

Cell: C98

Comment: Rick Heede:

Vallette master list: 1998, Turkmenistan, Ex-Im Bank financing of \$105.4 million; estimated emissions of 1,147 million tonnes over project life. Www.seen.org: 21.9 TCF over 20 years.

Cell: C101

Comment: Rick Heede:

The aim of this report is to account for both direct and indirect emissions of greenhouse gases that result from the projects financed by Ex-Im Bank and OPIC, regardless of the ECAs level of financial involvement. Direct emissions are typically defined as arising from facilities owned or controlled by the entity in question. Thus emissions from fuels combusted at Ex-Im and OPIC-financed power plants are considered direct emissions by both ECAs, the Wysham et al reports by the Sustainable Energy and Economy Network, and this report. In

the power sector we also included indirect emissions from their fuel combustion, e.g., fugitive methane from coal mines, and emissions from oil refineries whose emissions are attributable to the entities that create the demand for the fuels.

Ex-Im Bank and OPIC conclude that emissions from projects financed in the oil and gas sector are neither direct nor indirect, and neither agency account for any emissions from these projects (although Ex-Im does estimate emissions from oil and gas projects 1988-1999 in their 1999 report, but conclude, nonetheless, that such emissions are not attributable to the agency). This report does not concur: Ex-Im and OPIC financing of oil and gas projects assist in the construction of carbon extraction projects, and it is immaterial whether the foreign governments or their corporate partners own or control the equipment that ultimately convert the carbon fuels into carbon dioxide. The ECAs have enabled additional carbon to enter the global economy in an era when it is widely acknowledged that the world's economies must take serious steps to reduce emissions. Granted, both Ex-Im and OPIC also invest in low- and zero-carbon electric generation, and both ECAs appear to be increasing such investments. Furthermore, both agencies invest in new and rehabilitation plants that improve the efficiency of oil and gas extraction and power generation projects.

This report thus considers the eventual combustion of the oil products and dry natural gas flowing from Ex-Im and OPIC-financed projects as direct emissions attributable to these agencies. Furthermore, we designate and account for related emissions -- such as methane leakage from gas pipelines or processing energy used to refine crude oil into marketable products -- as direct emissions. (Note: both Ex-Im and OPIC do consider such direct emissions as attributable to them, since the emissions occur within the owned or controlled facilities financed by them [as opposed to emissions from downstream consumers], but neither agency makes an attempt to estimate the emissions.) This report does estimate these direct emissions from Ex-Im and OPIC-financed oil and gas operations.

Ex-Im's 1999 report does not offer an accounting of direct emissions resulting from their oil & gas sector project financing, even though the text avers that direct emissions are rightly counted.

Cell: C102

Comment: Rick Heede:

While global gas flaring is decreasing, it still represents 2.5 percent of carbon emissions from global natural gas consumption, down from 4.3 percent in 1990. The flaring percentage is likely to decrease further, and we use 2.0 percent of gas consumption to project future flaring emissions. This in a direct emission of carbon dioxide attributed to Ex-Im and OPIC-financed gas extraction, processing, liquefaction, and pipeline projects. We allocate 60 percent of this flaring rate to gas and 40 percent to oil production, processing, storage, and delivery. Gas flaring thus becomes 2 percent x 0.6 = 1.2 percent.

The formula is thus: current and future (over the 40-year operating life) emission from gas extracted, processed, or transported through Ex-Im bank/OPIC gas projects x 0.012.

Data from Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. cdiac.esd.ornl.gov/

Cell: C103

Comment: Rick Heede:

The previous worksheet on power plants on indirect emissions includes an estimate of the emissions arising from the energy used to operate refineries (conservatively, 4 percent). This indirect emission source is reduced for extraction and refining of crude oil, since refineries typically use their own oil products to operate the refineries (except for purchased steam, for example). In the current case, emissions from refinery energy use is considered a direct emissions source, except for additional emissions associated with steam and electricity

purchased from other providers (in which case these emissions are considered "indirect").

The data we have for Ex-Im and OPIC gas extraction, processing, and liquefaction projects are amounts of gas produced -- and all of the carbon therein is either combusted at gas processing plants or delivered to consumers or sequestered into non-combusted products (which we account for in "Direct emissions" above) -- and we do not estimate additional indirect emissions from gas extraction projects.

We add 1.0 percent of carbon emissions from gas projects as an estimate of direct emissions at gas processing plants as an estimate of emissions from on-site power generation or combined heat and power. This factor may prove conservative, but at least we know it is not zero.

The formula is: carbon emissions from gas extraction and refinery operations financed by Ex-Im and OPIC X 0.01.

Cell: C104

Comment: Rick Heede:

We estimate direct emissions from gas transportation to equal (conservatively) 1.0 percent of the carbon in all Ex-Im and OPIC gas extraction, processing, and pipeline-related projects to capture the emissions from fuels (such as on-site generation of electricity) used to power natural gas pipelines. This may prove conservative with additional research into this source of direct emissions attributable to Ex-Im and OPIC-financed projects.

The formula is thus: carbon emissions from gas extracted, refined, or transported in Ex-Im and OPIC-financed gas-projects X 0.01.

Cell: C105

Comment: Rick Heede:

Fugitive methane leakage from gas pipelines can be as high as 5 percent of throughput in older systems. New pipelines with modern flanges, valves, seals, and compressors are typically 0.5 to 1.0 percent (OPIC 2000 p. 12 cites leakage estimates ranging from 0.5 to 5.0 percent). Since Ex-Im and OPIC invest in new and presumably state-of-the-art projects and rehabilitation projects, we assume a world-wide fugitive methane rate of 0.5 percent on all Ex-Im and OPIC gas projects. This rate is applied to all gas-related projects to capture methane leakage from gas pipelines, gas production facilities, processing, liquefaction plants, and un-burned methane at flares. Future research may refine this methodology. A smaller fraction (0.2 percent) is applied to Ex-Im and OPIC-financed oil projects, above, to account for methane leakage from oil operations, oil pipelines, oil storage (CH4 "flashing" losses are estimated at 0.885 kg CH4 per barrel in oil tank farms (American Petroleum Institute

To convert this estimated fugitive methane emission rate into carbon equivalent, we use IPCC's GWP of CH4 = $23 \times CO2$, translating to 1 unit of methane = $6.272 \times Carbon-equivalent.*$

The formula is: carbon emissions from annual and total project throughput (columns E and G) X 0.005 (0.5 percent) X 6.272 = tonnes of methane in carbon-equivalent (column H and J) -- which is converted to CO2-equivalent by multiplying C-eq by 3.667 in columns I and K.

* To convert fugitive methane emissions to carbon-equivalent emissions: multiply methane emissions by 23 (the methane global warming potential factor [GWP] CH4:CO2) and divide by 3.667 (CO2:carbon), 23/3.667, or a factor of 6.272.

Note: the global warming potential of methane has been revised from $21 \times CO2$ to $23 \times CO2$ by the IPPC. Source: Houghton, J. T. et al (2001) Climate Change 2001: The Scientific Basis,

Working Group One, Third Assessment, IPPC, Cambridge University Press, p. 388.

Cell: G114

Comment: Rick Heede:

OPIC (unlike Ex-Im) did not generate estimates of emissions resulting from the agency's oil and gas portfolio.

We have thus relied exclusively on information from outside the agency:

Wysham, Sohn, & Vallette (1999) "OPIC, Ex-Im, and Climate Change: Business as Usual?" Institute for Policy Studies, Washington, www.seen.org.

Sustainable Energy and Economy Network (2002) "Overseas fossil fuel and renewable energy financing by U.S. government agencies (OPIC and ExIm) Since the 1992 Earth Summit" www.seen.org.

Vallette, Jim (2004) revised spreadsheets of Ex-Im and OPIC projects, plus master list of ECA and World Bank energy lending portfolios (updated to Jul04).

Cell: C115

Comment: Rick Heede:

OPIC's report Climate Change: Assessing Our Actions (2000) does not offer an accounting of emissions resulting from their oil & gas sector project financing, neither direct nor indirect-although the text avers that direct emissions are properly counted, although OPIC does not offer such an account. This report estimates indirect emissions from downstream consumers as attributable to OPIC's energy portfolio. We also estimate direct emissions (see section below).

Cell: J115

Comment: Rick Heede:

See our methodology discussion under Ex-Im's oil worksheet.

Cell: C118

Comment: Rick Heede:

Source of project information:

Wysham, Daphne, Jon Sohn, & Jim Vallette (1999) OPIC, Ex-Im and Climate Change: Business as Usual? An Analysis of U.S. Government Support for Fossil Fueled Development Abroad, 1992-1998, Institute for Policy Studies, Friends of the Earth, and International Trade Information Service Washington, 113 pp., www.seen.org.

Sustainable Energy and Economy Network (2002) Overseas fossil fuel and renewable energy financing by U.S. government agencies (OPIC and ExIm) Since the 1992 Earth Summit, Sustainable Energy and Economy Network, Washington, 12 pp., www.seen.org

The global ECA and World Bank projects database descriptions at www.seen.org.

OPIC's report Climate Change: Assessing Our Actions (2000) does not offer an accounting of emissions resulting from their oil & gas sector project financing, neither direct nor indirect -- the text avers that direct emissions are rightly counted, although does not offer an account.

Cell: C121

Comment: Rick Heede:

Vallette master ECA list: OPIC 2002 funding of \$350 million. Estimated emissions of 46 million tonnes CO2. Not found at www.seen.org ECA project database.

Cell: C122

Comment: Rick Heede:

Vallette master list: OPIC 1996 \$130 million, 40.3 million tonnes CO2.

Www.seen.org: "Based on reserves of 95 million barrels of oil." and "Gobe is among a string of prospective and active oil and gas fields stretching from the interior of PNG to the Gulf of Papua. A proposed pipeline would run to Australia." Also mentions a capacity of 45 million bbl/yr.

Cell: C123

Comment: Rick Heede:

www.seen.org: Total project emissions of 99.9 million tonnes of CO2 "based on 32,500 bpd capacity operation for 20 years." (=11.86 million bbl/yr). And "This project installs a 32,500-b/d crude distillation unit." and "A US\$ 180 million hydroskimming refinery in Napa Napa... will be the first refinery in the country. It plans to employ 75-100 people for operations and maintenance. Scope of work for the engineering, procurement, and construction (EPC) contractor includes site civil work, a storage tank farm, a 32,500-b/d crude distillation unit, a 5,000-b/d hydrodesulfurization (HDS) unit, a 3,500-b/d catalytic reforming unit, a jetty with ship loading and unloading facilities, utility systems including steam and power generation, and site infrastructure and support facilities."

Cell: C124

Comment: Rick Heede:

Vallete master list: OPIC 2003, \$130 million, no estimate of CO2 emissions or throughput. www.seen.org: no mention. Excluded here (insufficient data).

Cell: C128

Comment: Rick Heede:

Polar Lights (Ardalin) oil field cited in Vallette master list for OPIC in 1993 (\$50 mllion) and 1994 (\$200 million). CO2 estimate: 47.0 million tonnes CO2 over (presumably) 20 years. Www.seen.org database: not listed. Project not included here (insufficient data).

Cell: C137

Comment: Rick Heede:

The aim of this report is to account for both direct and indirect emissions of greenhouse gases that result from the projects financed by Ex-Im Bank and OPIC, regardless of the ECAs level of financial involvement. Direct emissions are typically defined as arising from facilities owned or controlled by the entity in question. Thus emissions from fuels combusted at Ex-Im and OPIC-financed power plants are considered direct emissions by both ECAs, the Wysham et al reports by the Sustainable Energy and Economy Network, and this report. In the power sector we also included indirect emissions from their fuel combustion, e.g., fugitive methane from coal mines, and emissions from oil refineries whose emissions are attributable to the entities that create the demand for the fuels.

Ex-Im Bank and OPIC conclude that emissions from projects financed in the oil and gas sector are neither direct nor indirect, and neither agency account for any emissions from these projects (although Ex-Im does estimate emissions from oil and gas projects 1988-1999 in their 1999 report, but conclude, nonetheless, that such emissions are not attributable to the agency). This report does not concur: Ex-Im and OPIC financing of oil and gas projects assist in the construction of carbon extraction projects, and it is immaterial whether the foreign governments or their corporate partners own or control the equipment that ultimately convert the carbon fuels into carbon dioxide. The ECAs have enabled additional carbon to enter the global economy in an era when it is widely acknowledged that the world's economies must take serious steps to reduce emissions. Granted, both Ex-Im and OPIC also invest in low- and zero-carbon electric generation, and both ECAs appear to be increasing such investments. Furthermore, both agencies invest in new and rehabilitation plants that improve the efficiency of oil and gas extraction and power generation projects.

This report thus considers the eventual combustion of the oil products and dry natural gas flowing from Ex-Im and OPIC-financed projects as direct emissions attributable to these agencies. Furthermore, we designate and account for related emissions -- such as methane leakage from gas pipelines or processing energy used to refine crude oil into marketable products -- as direct emissions. (Note: both Ex-Im and OPIC do consider such direct emissions as attributable to them, since the emissions occur within the owned or controlled facilities financed by them [as opposed to emissions from downstream consumers], but neither agency makes an attempt to estimate the emissions.) This report does estimate these direct emissions from Ex-Im and OPIC-financed oil and gas operations.

OPIC's report "Climate Change: Assessing Our Actions" (2000) does not offer an accounting of emissions resulting from their oil & gas sector project financing, neither direct nor indirect -- even though the text avers that direct emissions are rightly counted, although does not offer an account.

Cell: C138

Comment: Rick Heede:

See the "CO2 from flared gas at natural gas production facilities" below for details.

Significant quantities of gas is flared at oil production, processing, storage, and delivery facilities. This in an indirect emission of carbon dioxide attributed to Ex-Im and OPIC-financed oil-fired power plants. We allocate 60 percent of this flaring rate to gas and 40 percent to oil production, processing, storage, and delivery. Gas flaring attributable to oil thus becomes 2 percent x 0.4 = 0.8 percent.

The formula is thus: current and future (over the 40-year operating life) emission from gas consumed at Ex-Im bank/OPIC gas-fired power plants x 0.008.

Cell: C139

Comment: Rick Heede:

The previous worksheet on power plants on indirect emissions includes an estimate of the emissions arising from the energy used to operate refineries (conservatively, 4 percent). This indirect emission source is reduced for extraction and refining of crude oil, since refineries typically use their own oil products to operate the refineries (except for purchased steam, for example). In the current case, emissions associated with steam and electricity purchased from other providers (in which case these emissions are considered "indirect").

The data we have for Ex-Im and OPIC oil extraction projects are amounts of oil lifted per year (or peak production) or over the duration of its proven recoverable reserves (typically assumed to be 20 years, unless specified by other productoin plans) -- and all of the carbon therein is either combusted at refineries or delivered to consumers or sequestered into non-combusted products (which we account for in "Indirect emissions" above) -- we do not estimate additional direct emissions from oil extraction projects.

We do add 2.0 percent of carbon emissions from oil projects as an estimate of direct emissions at refineries from on-site power generation or combined heat and power. This factor may prove conservative, but at least we know it is not zero.

The formula is: carbon emissions from oil extraction and refinery operations financed by Ex-Im and OPIC X 0.02.

Cell: C140

Comment: Rick Heede:

We use Argonne National Laboratory's GREET model as guidance to making an estimate on

other fuel cycle energy inputs to transportation of crude, natural gas, and petroleum products from "wells to wheels."

Crude oil shipping by tankers (VLCCs): GREET assumptions: 5,080 miles average distance, 19 mph average speed, 4,763 Btu per horsepower-hour (typical tanker shaftpower = 124,500 HP); result: 6,089 Btu energy input to move one million Btu of crude oil, or 0.61 percent. Of course, not all oil company crude to refineries arrive by ocean-going tankers, so we dilute this adder by 0.57 (US averages 57 percent imported crude + products), thus the formula is 0.61% x 0.57 = 0.348 percent of total products marketed. Note: we believe the GREET estimates include energy required to back-haul a tanker, but this is uncertain; if not, GREET data suggest that backhauling a VLCC requires 20 Btu per ton-mile (vs 22 Btu/ton-mile for the front-haul). See GREET.xls, worksheet on Transportation and Distribution, section #9.

Pipelines: GREET assumptions: distance pipelined (750 miles for crude, 400 miles for products from refineries to tank farms), 270 Btu per ton-mile; results: 3,815 million Btu of petroleum input to pipeline transport of one million Btu of crude oil (1,998 Btu per million Btu of gasoline pipelined). Note: this excludes other energy inputs, such as gas or electricity used in pipelines, which brings the pipeline energy input to 6,129 Btu per million Btu of crude thus transported.) Dilution: assume that 43 percent of crude is shipped to refineries by pipeline (thus $0.43 \times 3,815 = 1,640$ Btu per million Btu of total crude shipped), plus assume that all products are pipelined from refineries to tank farms (at 1,998 Btu per million Btu of refined products); total 1,640 + 1,998 = 3,638 Btu per million Btu, total energy input to pipeline of crude and products, or 0.364 percent.

Conclusion: oil inputs to transportation of 0.763% (for domestic waterborne shipping) + 0.348% (for crude oil and products transport by ocean-going tankers) + 0.364% (for pipeline of crude and products) = 1.475 percent. Detailed analysis will probably find this result to be conservative.

The formula is thus: carbon emissions from oil consumed in Ex-Im and OPIC-financed oilfired power plants x 0.0148.

Note: Not included in this or any other direct emissions estimate of OPIC and Ex-Im projects is the considerable energy and emissions embodied in the construction of the power plants and the infrastructure to extract, refine, and deliver fuel; nor is the energy invested in building electric transmission grids included in the power plant worksheets.

Sources: Stacy Davis (2001) Transportation Energy Data Book, edition 21, U.S. Dept of Energy, Center for Transportation Analysis, Oak Ridge National Laboratory, Oak Ridge, TN. Tables 12-4, 12-5, and 1-11., and personal communication.

Michael Q. Wang, Argonne National Laboratory, GREET model, www.transportation.anl.gov/greet/index.html, and personal communication 18Jul03.

We estimate direct emissions from oil transportation to equal a conservative 1.0 percent of the carbon in the transported oil. This may prove conservative with additional research into this source of direct emissions attributable to Ex-Im and OPIC-financed projects.

The formula is thus: carbon emissions from oil extracted, refined, or transported in Ex-Im and OPIC-financed oil-projects X 0.01.

Cell: C141

Comment: Rick Heede:

Fugitive methane leakage from gas pipelines can be as high as 5 percent of throughput in older systems. New pipelines with modern flanges, valves, seals, and compressors are

typically 0.5 to 1.0 percent (OPIC 2000 p. 12 cites leakage estimates ranging from 0.5 to 5.0 percent). Since Ex-Im and OPIC invest in new and presumably state-of-the-art projects and rehabilitation projects, we assume a world-wide fugitive methane rate of 0.5 percent on all Ex-Im and OPIC gas projects. This rate is applied to all gas-related projects to capture methane leakage from gas pipelines, gas production facilities, processing, liquefaction plants, and un-burned methane at flares. Future research may refine this methodology. A smaller fraction (0.2 percent) is applied to Ex-Im and OPIC-financed oil projects, above, to account for methane leakage from oil operations, oil pipelines, oil storage (CH4 "flashing" losses alone are estimated at 0.885 kg CH4 per barrel in oil tank farms (American Petroleum Institute, 2001, Greenhouse Gas Compendium), oil production sites, incomplete flaring, and so on.

To convert this estimated fugitive methane emission rate into carbon equivalent, we use IPCC's GWP of CH4 = $23 \times CO2$, translating to 1 unit of methane = $6.272 \times Carbon-equivalent.*$

The formula is: carbon emissions from annual and total project throughput (columns E and G) X 0.002 (0.2 percent) X 6.272 = tonnes of methane in carbon-equivalent (column H and J) -- which is converted to CO2-equivalent by multiplying C-eq by 3.667 in columns I and K.

* To convert fugitive methane emissions to carbon-equivalent emissions: multiply methane emissions by 23 (the methane global warming potential factor [GWP] CH4:CO2) and divide by 3.667 (CO2:carbon), 23/3.667, or a factor of 6.272.

Note: the global warming potential of methane has been revised from 21 x CO2 to 23 x CO2 by the IPPC. Source: Houghton, J. T. et al (2001) Climate Change 2001: The Scientific Basis, Working Group One, Third Assessment, IPPC, Cambridge University Press, p. 388.

Cell: G150

Comment: Rick Heede:

OPIC (unlike Ex-Im) did not generate estimates of emissions resulting from the agency's oil and gas portfolio.

We have thus relied exclusively on information from outside the agency:

Wysham, Sohn, & Vallette (1999) "OPIC, Ex-Im, and Climate Change: Business as Usual?" Institute for Policy Studies, Washington, www.seen.org.

Sustainable Energy and Economy Network (2002) "Overseas fossil fuel and renewable energy financing by U.S. government agencies (OPIC and ExIm) Since the 1992 Earth Summit" www.seen.org.

Vallette, Jim (2004) revised spreadsheets of Ex-Im and OPIC projects, plus master list of ECA and World Bank energy lending portfolios (updated to Jul04).

Cell: J151

Comment: Rick Heede:

See our methodology discussion under Ex-Im's gas worksheet.

Cell: C154

Comment: Rick Heede:

Source of projects: Ex-Im Bank (1999) Ex-Im Bank's Role in Greenhouse Gas Emissions and Climate Change, revised, Appendix C.

Cell: C155 Comment: Rick Heede:

Comment: Rick Heede

Sources: SEEN database at www.seen.org, Jim Vallette's updated spreadsheets on Ex-Im Bank and OPIC projects, and especially Vallette's Master spreadsheet on all ECA energy-related projects (updated to Jul04).

Note: Unlike Ex-Im data, Vallette's data is in metric tonnes of CO2. However, we account for non-fuel / non-combusted uses of oil and gas extraction by multiplying Vallette's CO2 estimate by 0.91 (9 percent non-combustion).

Cell: C157

Comment: Rick Heede:

Vallette maste list: OPIC financing of \$69.8 million and \$122 million in 1992 and 1998; estimated CO2: 1,263.5 million tonnes.

Www.seen.org: 1,263.5 million tonnes CO2 based on reserves of 1.015 billion barrels of oil, and 450 billion cubic meters of natural gas" and "The Shabwa oil and gas basin (Block 10A), in which Nabors is drilling, holds estimated 180 million barrels of proven and probable reserves. Hunt Oil's Marib Al Jawf (Block 18) (Maarib and Jawf) fields hold a combined 490 million barrels of oil reserves and 450 billion cubic meters of natural gas reserves. The Shabwa, Marib and Jawf fields join in a shared zone known as Janna Block 5 in northern Yemen, which holds 345 million barrels of oil reserves. Reserves financed by OPIC thus equal 1.015 billion barrels of oil (60% of the national total), and 450 billion cubic meters of natural gas. 5.3 million tons of LNG/year are planned to be produced from the Marib/Jawf and Jannah fields in a Hunt (15%)-Exxon (15%)-Total (36%) joint venture supported by OPIC. The LNG will be exported.

This report calculates: Oil production: "1.015 billion barrels of oil" over 20-year operating life = 50.75 million bbl/yr.

Gas production: "450 billion cubic meters of natural gas" = 15,813 billion cf total over 20year operating life = 790.65 billion cf/yr.

Cell: C158

Comment: Rick Heede:

See OPIC, Vallette master: OPIC 2000, \$25 million, CO2 not estimated.; not listed in SEEN (2002).

Www.seen.org: not listed. This project is excluded until status is corroborated.

Cell: C159

Comment: Rick Heede:

Vallette as 1993 OPIC \$200 million + Ex-Im Bank \$35 million, estimated 52 million tonnes CO2: "Enron India oil and gas development" but no show in Ex-Im report 1999.

Www.seen.org: 52.4 million tonnes CO2 "based on guaranteed 1 trillion cubic feet of natural gas delivery." and "The project has guaranteed to deliver 1 trillion cubic feet of proven gas reserves over the next 25 years. From BG press release: "Equity production from these fields, in the year to March 31, 2001, totalled an average of approximately 70 million standard cubic feet of gas per day and 8,200 barrels of oil per day. As at March 31, 2001, EOGIL had estimated net proved and probable reserves of over 170 million barrels of oil equivalent. These reserves are, therefore, being acquired at a cost of less than \$2.30 per barrel of oil equivalent.... Further development of both the Panna/Mukta and Tapti fields is expected over the next few years, subject to Government and partner approval.... The EOGIL assets comprise a 30 per cent interest in the Panna/Mukta oil and associated gas production facilities (some 60 miles north west of Mumbai), the Tapti gas production complex (some 100 miles north west of Mumbai) and a 62.64 per cent interest in Block CB-OS/1. EOGIL has about 200 employees based offshore in the two fields and at offices in Mumbai, New Delhi, Baroda and a supply base at Bhavnagar, which supports exploration,

development and production activities for the fields. Currently all gas produced from the fields is bought by the Gas Authority of India (GAIL). The oil production from the Panna/Mukta complex is purchased by the Indian Oil Corporation (IOC). The deal does not include the Dabhol power station or LNG plant."

Our calculation: 70 million cf/d = 25.55 billion cf/yr over 25 years = 638.75 billion cf.

Cell: C160

Comment: Rick Heede:

Vallette master ECA list: Mobil offshore NGL project, 2004 OPIC financing of \$325 million; no estimated emissions.

This project is excluded in this report until status can be verified.

Cell: C161

Comment: Rick Heede:

Vallette list: 1993 OPIC, \$100 million, no emissions estimate.

Www.seen.org: "According to OPIC, this project was "currently inactive" in July 2001." "The Miskar Field holds proven reserves of 1.8 trillion cubic feet of gas, of which 800 bcf are recoverable."

This project does not include an emissions estimate; verify current status.

Cell: C162

Comment: Rick Heede:

www.seen.org: 181.1 million tonnes of CO2 "based on projected "cumulative productions of 375.5 million barrels oil and 413.2 billion cubic feet of gas." (EIA)"

Cell: C164

Comment: Rick Heede:

Vallette master ECA list: OPIC 2002 funding of \$350 million. Estimated emissions of 46 million tonnes CO2. Not found at www.seen.org ECA project database.

Cell: C167

Comment: Rick Heede:

The aim of this report is to account for both direct and indirect emissions of greenhouse gases that result from the projects financed by Ex-Im Bank and OPIC, regardless of the ECAs level of financial involvement. Direct emissions are typically defined as arising from facilities owned or controlled by the entity in question. Thus emissions from fuels combusted at Ex-Im and OPIC-financed power plants are considered direct emissions by both ECAs, the Wysham et al reports by the Sustainable Energy and Economy Network, and this report. In the power sector we also included indirect emissions from their fuel combustion, e.g., fugitive methane from coal mines, and emissions from oil refineries whose emissions are attributable to the entities that create the demand for the fuels.

Ex-Im Bank and OPIC conclude that emissions from projects financed in the oil and gas sector are neither direct nor indirect, and neither agency account for any emissions from these projects (although Ex-Im does estimate emissions from oil and gas projects 1988-1999 in their 1999 report, but conclude, nonetheless, that such emissions are not attributable to the agency). This report does not concur: Ex-Im and OPIC financing of oil and gas projects assist in the construction of carbon extraction projects, and it is immaterial whether the foreign governments or their corporate partners own or control the equipment that ultimately convert the carbon fuels into carbon dioxide. The ECAs have enabled additional carbon to enter the global economy in an era when it is widely acknowledged that the world's economies must take serious steps to reduce emissions. Granted, both Ex-Im

and OPIC also invest in low- and zero-carbon electric generation, and both ECAs appear to be increasing such investments. Furthermore, both agencies invest in new and rehabilitation plants that improve the efficiency of oil and gas extraction and power generation projects.

This report thus considers the eventual combustion of the oil products and dry natural gas flowing from Ex-Im and OPIC-financed projects as direct emissions attributable to these agencies. Furthermore, we designate and account for related emissions -- such as methane leakage from gas pipelines or processing energy used to refine crude oil into marketable products -- as direct emissions. (Note: both Ex-Im and OPIC do consider such direct emissions as attributable to them, since the emissions occur within the owned or controlled facilities financed by them [as opposed to emissions from downstream consumers], but neither agency makes an attempt to estimate the emissions.) This report does estimate these direct emissions from Ex-Im and OPIC-financed oil and gas operations.

OPIC's report "Climate Change: Assessing Our Actions" (2000) does not offer an accounting of emissions resulting from their oil & gas sector project financing, neither direct nor indirect -- even though the text avers that direct emissions are rightly counted, although does not offer an account.

Cell: C168

Comment: Rick Heede:

While global gas flaring is decreasing, it still represents 2.5 percent of carbon emissions from global natural gas consumption, down from 4.3 percent in 1990. The flaring percentage is likely to decrease further, and we use 2.0 percent of gas consumption to project future flaring emissions. This in a direct emission of carbon dioxide attributed to Ex-Im and OPIC-financed gas extraction, processing, liquefaction, and pipeline projects. We allocate 60 percent of this flaring rate to gas and 40 percent to oil production, processing, storage, and delivery. Gas flaring thus becomes 2 percent x 0.6 = 1.2 percent.

The formula is thus: current and future (over the 40-year operating life) emission from gas extracted, processed, or transported through Ex-Im bank/OPIC gas projects x 0.012.

Data from Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. cdiac.esd.ornl.gov/

Cell: C169

Comment: Rick Heede:

The previous worksheet on power plants on indirect emissions includes an estimate of the emissions arising from the energy used to operate refineries (conservatively, 4 percent). This indirect emission source is reduced for extraction and refining of crude oil, since refineries typically use their own oil products to operate the refineries (except for purchased steam, for example). In the current case, emissions associated with steam and electricity purchased from other providers (in which case these emissions are considered "indirect").

The data we have for Ex-Im and OPIC gas extraction, processing, and liquefaction projects are amounts of gas produced -- and all of the carbon therein is either combusted at gas processing plants or delivered to consumers or sequestered into non-combusted products (which we account for in "Direct emissions" above) -- and we do not estimate additional indirect emissions from gas extraction projects.

We add 1.0 percent of carbon emissions from gas projects as an estimate of direct emissions at gas processing plants as an estimate of emissions from on-site power generation or combined heat and power. This factor may prove conservative, but at least we know it is not zero.
The formula is: carbon emissions from gas extraction and refinery operations financed by Ex-Im and OPIC X 0.01.

Cell: C170

Comment: Rick Heede:

We estimate direct emissions from gas transportation to equal (conservatively) 1.0 percent of the carbon in all Ex-Im and OPIC gas extraction, processing, and pipeline-related projects to capture the emissions from fuels (such as on-site generation of electricity) used to power natural gas pipelines. This may prove conservative with additional research into this source of direct emissions attributable to Ex-Im and OPIC-financed projects.

The formula is thus: carbon emissions from gas extracted, refined, or transported in Ex-Im and OPIC-financed gas-projects X 0.01.

Cell: C171

Comment: Rick Heede:

Fugitive methane leakage from gas pipelines can be as high as 5 percent of throughput in older systems. New pipelines with modern flanges, valves, seals, and compressors are typically 0.5 to 1.0 percent (OPIC 2000 p. 12 cites leakage estimates ranging from 0.5 to 5.0 percent). Since Ex-Im and OPIC invest in new and presumably state-of-the-art projects and rehabilitation projects, we assume a world-wide fugitive methane rate of 0.5 percent on all Ex-Im and OPIC gas projects. This rate is applied to all gas-related projects to capture methane leakage from gas pipelines, gas production facilities, processing, liquefaction plants, and un-burned methane at flares. Future research may refine this methodology. A smaller fraction (0.2 percent) is applied to Ex-Im and OPIC-financed oil projects, above, to account for methane leakage from oil operations, oil pipelines, oil storage (CH4 "flashing" losses alone are estimated at 0.885 kg CH4 per barrel in oil tank farms (American Petroleum Institute, 2001, Greenhouse Gas Compendium), oil production sites, incomplete flaring, and so on.

To convert this estimated fugitive methane emission rate into carbon equivalent, we use IPCC's GWP of CH4 = $23 \times CO2$, translating to 1 unit of methane = $6.272 \times Carbon-equivalent.*$

The formula is: carbon emissions from annual and total project throughput X 0.005 (0.5 percent) X 6.272 = tonnes of methane in carbon-equivalent (column H and J) -- which is converted to CO2-equivalent by multiplying C-eq by 3.667 in columns I and K.

* To convert fugitive methane emissions to carbon-equivalent emissions: multiply methane emissions by 23 (the methane global warming potential factor [GWP] CH4:CO2) and divide by 3.667 (CO2:carbon), 23/3.667, or a factor of 6.272.

Note: the global warming potential of methane has been revised from 21 x CO2 to 23 x CO2 by the IPPC. Source: Houghton, J. T. et al (2001) Climate Change 2001: The Scientific Basis, Working Group One, Third Assessment, IPPC, Cambridge University Press, p. 388.

GHG emissions from Ex-Im Bank and OPIC projects

Power Plants and Oil & Gas

Climate Mitigation Services Richard Heede 20-Dec-04

Export-Import Bank & Overseas Private Investment Corporation								
Direct and indirect emissions	Peak production (MtC-eq/yr)	Peak production (MtCO2-eq/yr)	Total project (MtC-eq)	Total project (MtCO2-eq)				
Ex-Im Bank								
Direct emissions, Power sector	77	281	3,898	14,295				
Direct emissions, Oil & Gas sector	16	60	343	1,257				
Total direct emissions	93	341	4,241	15,551				
Indirect emissions, Power sector	8	31	376	1,379				
Indirect emissions, Oil & Gas sector	353	1,294	7,236	26,536				
Total indirect emissions	361	1,325	7,612	27,915				
Total Ex-Im emissions, Power sector	85	312	4,274	15,673				
Total Ex-Im emissions, Oil & Gas sector	369	1,354	7,579	27,793				
Total Ex-Im emissions	454	1,666	11,853	43,466				
OPIC								
Direct emissions, Power sector	24	88	1,176	4,314				
Direct emissions, Oil & Gas sector	2	7	42	153				
Total direct emissions	26	95	1,218	4,466				
Indirect emissions, Power sector	3	12	138	505				
Indirect emissions, Oil & Gas sector	38	138	864	3,169				
Total indirect emissions	41	150	1,002	3,674				
Total OPIC emissions, Power sector	27	100	1,314	4,818				
Total OPIC emissions, Oil & Gas sector	40	145	906	3,322				
Total OPIC emissions	67	245	2,220	8,140				
	_							
Ex-Im Bank & OPIC								
Direct emissions, Power sector	101	370	5,075	18,608				
Direct emissions, Oil & Gas sector	18	67	384	1,410				
Total direct emissions	119	436	5,459	20,018				
Indirect emissions, Power sector	11	42	514	1,883				
Indirect emissions, Oil & Gas sector	391	1,433	8,101	29,705				
Total indirect emissions	402	1,475	8,614	31,588				
Total Ex-Im & OPIC emissions, Power plants	s 112	412	5,588	20,491				
Total Ex-Im & OPIC emissions, Oil & Gas	409	1,499	8,485	31,115				
Total Ex-Im & OPIC emissions	521	1,911	14,073	51,606				

Of which methane (MtC-eq and MtCO2-eq):	13	47	443	1,623
Methane (percent of Total Ex-Im & OPIC emissions):	2.5%	2.5%	3.1%	3.1%

Cell: D4

Comment: Rick Heede:

This report relies extensively on published and un-published work by both Ex-Im Bank (1999) and OPIC (2000), and also by Wysham, Sohn, & Vallette (1999). We have also used updated (and revised) unpublished spreadsheets by Jim Vallette, a 2000 report by Sustainable Energy and Economy Network (available at www.seen.org), the extensive project database posted at the seen.org website, and memoranda written by uncited Ex-Im and OPIC staff.

These publications have been essential in our efforts to identify financed projects as well as their fuel type, installed equipment, generating capacity, marginal oil and gas reserves related to financed projects, and anticipated peak or annual production rates. Neither Ex-Im nor OPIC publish details on their financed projects in their regular or annual reports. The emissions estimation protocols of both Export Credit Agencies and that of Wysham et al have been reviewed. These protocols have been not been adopted in the present work, however. The most significant differences between the previous and the current emissions accounting protocols are (a) our inclusion of several categories of indirect emissions, (b) our adoption of longer (and realistic) operating lives for power plants financed by Ex-Im or OPIC, and (c) inclusion of emissions flowing from Ex-Im/OPIC-financed oil and gas extraction projects (both ECAs disavow accounting for emissions from oil and gas fuels merely facilitated by their financial support). See the attached Declaration and the comments embedded in this spreadsheet for details.

We have made every effort to be as complete, judicious, and accurate as available data allow.

Richard Heede, Climate Mitigation Services, 1626 Gateway Road, Snowmass, Colorado 81654 USA 1-970-927-9511 heede@climatemitigation.com

-Rick-= 20Dec04

Ex-Im and OPIC Cumulative Greenhouse Gas Emissions