State of global fuel supply

Page - July 14, 2010
Public data about oil and gas reserves is strikingly inconsistent, and potentially unreliable for legal, commercial, historical and sometimes political reasons. The most widely available and quoted figures, those from the industry journals Oil & Gas Journal and World Oil, have limited value as they report the reserve figures provided by companies and governments without analysis or verification. Moreover, as there is no agreed definition of reserves or standard reporting practice, these figures usually stand for different physical and conceptual magnitudes. Confusing terminology - 'proved', 'probable', 'possible', 'recoverable', 'reasonable certainty' - only adds to the problem.

The reserves chaos


Public data about oil and gas reserves is strikingly inconsistent, and potentially unreliable for legal, commercial, historical and sometimes political reasons. The most widely available and quoted figures, those from the industry journals Oil & Gas Journal and World Oil, have limited value as they report the reserve figures provided by companies and governments without analysis or verification. Moreover, as there is no agreed definition of reserves or standard reporting practice, these figures usually stand for different physical and conceptual magnitudes. Confusing terminology - 'proved', 'probable', 'possible', 'recoverable', 'reasonable certainty' - only adds to the problem.

Historically, private oil companies have consistently underestimated their reserves to comply with conservative stock exchange rules and through natural commercial caution. Whenever a discovery was made, only a portion of the geologist's estimate of recoverable resources was reported; subsequent revisions would then increase the reserves from that same oil field over time. National oil companies, mostly represented by OPEC (Organisation of Petroleum Exporting Countries), have taken a very different approach. They are not subject to any sort of accountability and their reporting practices are even less clear. In the late 1980s, the OPEC countries blatantly overstated their reserves while competing for production quotas, which were allocated as a proportion of the reserves. Although some revision was needed after the companies were nationalised, between 1985 and 1990, OPEC countries increased their apparent joint reserves by 82%. Not only were these dubious revisions never corrected, but many of these countries have reported untouched reserves for years, even if no sizeable discoveries were made and production continued at the same pace. Additionally, the Former Soviet Union's oil and gas reserves have been overestimated by about 30% because the original assessments were later misinterpreted.

Non-conventional oil reserves


A large share of the world's remaining oil resources is classified as 'non-conventional'. Potential fuel sources such as oil sands, extra heavy oil and oil shale are generally more costly to exploit and their recovery involves enormous environmental damage. The reserves of oil sands and extra heavy oil in existence worldwide are estimated to amount to around 6 trillion barrels, of which between 1 and 2 trillion barrels are believed to be recoverable if the oil price is high enough and the environmental standards low enough.

One of the worst examples of environmental degradation resulting from the exploitation of unconventional oil reserves is the oil sands that lie beneath the Canadian province of Alberta and form the world's second-largest proven oil reserves after Saudi Arabia. Producing crude oil from these 'tar sands' - a heavy mixture of bitumen, water, sand and clay found beneath more than 54,000 square miles50 of prime forest in northern Alberta, an area the size of England and Wales - generates up to four times more carbon dioxide, the principal global warming gas, than conventional drilling. The booming oil sands industry will produce 100 million tonnes of CO2 a year (equivalent to a fifth of the UK's entire annual emissions) by 2012, ensuring that Canada will miss its emission targets under the Kyoto treaty. The oil rush is also scarring a wilderness landscape: millions of tonnes of plant life and top soil are scooped away in vast opencast mines and millions of litres of water diverted from rivers. Up to five barrels of water are needed to produce a single barrel of crude and the process requires huge amounts of natural gas. It takes two tonnes of the raw sands to produce a single barrel of oil.

Gas


Natural gas has been the fastest growing fossil energy source over the last two decades, boosted by its increasing share in the electricity generation mix. Gas is generally regarded as an abundant resource and public concerns about depletion are limited to oil, even though few in-depth studies address the subject. Gas resources are more concentrated, and a few massive fields make up most of the reserves. The largest gas field in the world holds 15% of the Ultimate Recoverable Resources (URR), compared to 6% for oil. Unfortunately, information about gas resources suffers from the same bad practices as oil data because gas mostly comes from the same geological formations, and the same stakeholders are involved.

Most reserves are initially understated and then gradually revised upwards, giving an optimistic impression of growth. By contrast, Russia's reserves, the largest in the world, are considered to have been overestimated by about 30%. Owing to geological similarities, gas follows the same depletion dynamic as oil, and thus the same discovery and production cycles. In fact, existing data for gas is of worse quality than for oil, with ambiguities arising over the amount produced, partly because flared and vented gas is not always accounted for. As opposed to published reserves, the technical ones have been almost constant since 1980 because discoveries have roughly matched production.

Shale gas


Natural gas production, especially in the United States, has recently involved a growing contribution from non-conventional gas supplies such as shale gas. Conventional natural gas deposits have a welldefined geographical area, the reservoirs are porous and permeable, the gas is produced easily through a wellbore and does not generally require artificial stimulation. Non-conventional deposits, on the other hand, are often lower in resource concentration, more dispersed over large areas and require well stimulation or some other extraction or conversion technology. They are also usually more expensive to develop per unit of energy.

Research and investment in non-conventional gas resources has increased significantly in recent years due to the rising price of conventional natural gas. In some areas the technologies for economic production have already been developed, in others it is still at the research stage. Extracting shale gas, however, usually goes hand in hand with environmentally hazardous processes. Even so, it is expected to increase.

Coal


Coal was the world's largest source of primary energy until it was overtaken by oil in the 1960s. Today, coal supplies almost one quarter of the world's energy. Despite being the most abundant of fossil fuels, coal's development is currently threatened by environmental concerns; hence its future will unfold in the context of both energy security and global warming.


Coal is abundant and more equally distributed throughout the world than oil and gas. Global recoverable reserves are the largest of all fossil fuels, and most countries have at least some. Moreover, existing and prospective big energy consumers like the US, China and India are self-sufficient in coal and will be for the foreseeable future. Coal has been exploited on a large scale for two centuries, so both the product and the available resources are well known; no substantial new deposits are expected to be discovered. Extrapolating the demand forecast forward, the world will consume 20% of its current reserves by 2030 and 40% by 2050. Hence, if current trends are maintained, coal would still last several hundred years.

Nuclear


Uranium, the fuel used in nuclear power plants, is a finite resource whose economically available reserves are limited. Its distribution is almost as concentrated as oil and does not match global consumption. Five countries - Canada, Australia, Kazakhstan, Russia and Niger - control three quarters of the world's supply. As a significant user of uranium, however, Russia's reserves will be exhausted within ten years.

Secondary sources, such as old deposits, currently make up nearly half of worldwide uranium reserves. These will soon be used up, however. Mining capacities will have to be nearly doubled in the next few years to meet current needs.

A joint report by the OECD Nuclear Energy Agency and the International Atomic Energy Agency52 estimates that all existing nuclear power plants will have used up their nuclear fuel, employing current technology, within less than 70 years. Given the range of scenarios for the worldwide development of nuclear power, it is likely that uranium supplies will be exhausted sometime between 2026 and 2070. This forecast includes the use of mixed oxide fuel (MOX), a mixture of uranium and plutonium.